-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlognet.m
166 lines (155 loc) · 4 KB
/
lognet.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
function fit = lognet(x,is_sparse,irs,pcs,y,weights,offset,parm,nobs,nvars,...
jd,vp,cl,ne,nx,nlam,flmin,ulam,thresh,isd,intr,maxit,kopt,family)
[noo,nc] = size(y);
if noo ~= nobs
error('x and y have different number of rows in call to glmnet');
end
if nc == 1
[classes,~,sy] = unique(y);
nc = length(classes);
indexes = eye(nc);
y = indexes(sy,:);
end
if strcmp(family, 'binomial')
if nc > 2
error ('More than two classes; use multinomial family instead');
end
nc = 1; % for calling binomial
y = y(:,[2,1]);
end
o = [];
if ~isempty(weights)
% check if any are zero
o = weights > 0;
if ~all(o) %subset the data
y = y(o,:);
x = x(o,:);
weights = weights(o);
nobs = sum(o);
else
o = [];
end
[my,ny] = size(y);
y = y .* repmat(weights,1,ny);
end
if isempty(offset)
offset = y * 0;
is_offset = false;
else
if ~isempty(o)
offset = offset(o,:);
end
do = size(offset);
if (do(1) ~= nobs)
error('offset should have the same number of values as observations in binomial/multinomial call to glmnet');
end
if (nc == 1)
if (do(2) == 1)
offset = cat(2,offset,-offset);
end
if (do(2) > 2)
error('offset should have 1 or 2 columns in binomial call to glmnet');
end
end
if strcmp(family,'multinomial') && (do(2) ~= nc)
error('offset should have same shape as y in multinomial call to glmnet');
end
is_offset = true;
end
if (is_sparse)
task = 20;
[lmu,a0,ca,ia,nin,dev,alm,nlp,jerr,dev0,ot] = glmnetMex(task,parm,x,y,jd,vp,ne,nx,nlam,flmin,ulam,thresh,isd,cl,intr,maxit,nc,kopt,offset,irs,pcs);
else
task = 21;
[lmu,a0,ca,ia,nin,dev,alm,nlp,jerr,dev0,ot] = glmnetMex(task,parm,x,y,jd,vp,ne,nx,nlam,flmin,ulam,thresh,isd,cl,intr,maxit,nc,kopt,offset);
end
if (jerr ~= 0)
errmsg = err(jerr,maxit,nx,family);
if (errmsg.fatal)
error(errmsg.msg);
else
warning(errmsg.msg);
end
end
ninmax = max(nin);
lam = alm;
if (ulam == 0.0)
lam = fix_lam(lam); % first lambda is infinity; changed to entry point
end
if strcmp(family, 'multinomial')
beta_list = {};
a0 = a0 - repmat(mean(a0), nc, 1); %multinomial: center the coefficients
dfmat=a0;
dd=[nvars, lmu];
if ninmax > 0
ca = reshape(ca, nx, nc, lmu);
ca = ca(1:ninmax,:,:);
ja = ia(1:ninmax);
[ja1,oja] = sort(ja);
df = any(abs(ca) > 0, 2);
df = sum(df, 1);
df = df(:)';
for k=1:nc
ca1 = reshape(ca(:,k,:), ninmax, lmu);
cak = ca1(oja,:);
dfmat(k,:) = sum(abs(cak) > 0, 1);
beta = zeros(nvars, lmu);
beta(ja1,:) = cak;
beta_list{k} = beta;
end
else
for k = 1:nc
dfmat(k,:) = zeros(1,lmu);
beta_list{k} = zeros(nvars, lmu);
end
df = zeros(1,lmu);
end
fit.a0 = a0;
fit.beta = beta_list;
fit.dev = dev;
fit.nulldev = dev0;
fit.dfmat = dfmat;
fit.df = df';
fit.lambda = lam;
fit.npasses = nlp;
fit.jerr = jerr;
fit.dim = dd;
if (kopt == 2)
grouped = true;
else
grouped = false;
end
fit.grouped = grouped;
fit.offset = is_offset;
fit.class = 'multnet';
else
dd=[nvars, lmu];
if ninmax > 0
ca = ca(1:ninmax,:);
df = sum(abs(ca) > 0, 1);
ja = ia(1:ninmax);
[ja1,oja] = sort(ja);
beta = zeros(nvars, lmu);
beta (ja1, :) = ca(oja,:);
else
beta = zeros(nvars,lmu);
df = zeros(1,lmu);
end
fit.a0 = a0;
fit.beta = beta; %sign flips make 2 arget class
fit.dev = dev;
fit.nulldev = dev0;
fit.df = df';
fit.lambda = lam;
fit.npasses = nlp;
fit.jerr = jerr;
fit.dim = dd;
fit.offset = is_offset;
fit.class = 'lognet';
end
function new_lam = fix_lam(lam)
new_lam = lam;
if (length(lam) > 2)
llam=log(lam);
new_lam(1)=exp(2*llam(2)-llam(3));
end