From ba3c620112a603f6384c30e34419161c6e0e6d18 Mon Sep 17 00:00:00 2001 From: Kyle Niemeyer Date: Thu, 27 Feb 2020 00:00:13 -0800 Subject: [PATCH] more eigenvalue content --- _build/bvps/eigenvalue.html | 457 +++++++++++++++++++- _build/bvps/finite-difference.html | 9 +- _build/bvps/masses.m | 1 + _build/bvps/shooting-method.html | 22 +- _build/images/bvps/eigenvalue_14_0.png | Bin 13846 -> 19563 bytes _build/images/bvps/eigenvalue_16_0.png | Bin 0 -> 9959 bytes _build/images/bvps/shooting-method_13_0.png | Bin 12576 -> 12576 bytes _build/images/bvps/shooting-method_3_1.png | Bin 8763 -> 8763 bytes content/bvps/eigenvalue.ipynb | 342 ++++++++++++++- content/bvps/finite-difference.ipynb | 14 +- content/bvps/masses.m | 1 + content/bvps/shooting-method.ipynb | 23 +- 12 files changed, 804 insertions(+), 65 deletions(-) create mode 100644 _build/images/bvps/eigenvalue_16_0.png diff --git a/_build/bvps/eigenvalue.html b/_build/bvps/eigenvalue.html index 71cea06..0aa90ff 100644 --- a/_build/bvps/eigenvalue.html +++ b/_build/bvps/eigenvalue.html @@ -11,7 +11,7 @@ next_page: url: /quizzes/quiz2-IVPs.html suffix: .ipynb -search: y lambda begin align end x l k frac equation n pi eigenvalues p beam delta b boundary quad rightarrow bmatrix solution conditions ei cos sin lets case our values get ldots infty left right different equations mathbf det eigenvalue problems where buckling consider deflection mz modes gather load yi obtain us system example supported also e ode general neq because instead need associated represent corresponding cr finite above using matrix given means characteristic value not analytical certain simply governing considering sum simplify trivial text problem infinite eigenfunctions three buckle recall properties sqrt critical slightly same differences points into modify +search: y x align begin end lambda k frac l equation n omega m pi eigenvalues left right bmatrix system p b delta beam sin quad lets conditions boundary equations rightarrow different modes det t solution values ei cos case our mathbf get prime example ldots infty mode above into eigenvalue problems where buckling consider deflection mz also need associated represent gather load using yi mass motion masses amplitude odes initial obtain us supported e d ode general neq because instead corresponding connected cr same based finite matrix calculate given spring amplitudes means characteristic value not analytical certain simply governing considering comment: "***PROGRAMMATICALLY GENERATED, DO NOT EDIT. SEE ORIGINAL FILES IN /content***" --- @@ -74,9 +74,9 @@

Example: beam buckling
- +
+ +
+
+

As expected, this matches with our manual calculation above. But, we might want to calculate these eigenvalues more accurately, so let's generalize this a bit and then try using $\Delta x= 0.1$:

+ +
+
+
+
+ +
+ +
+
+ +
+
+
clear all; clc
+
+dx = 0.1;
+L = 3.0;
+x = 0 : dx : L;
+n = length(x) - 2;
+
+Astar = zeros(n,n);
+for i = 1 : n
+    if i == 1
+        Astar(1,1) = 2;
+        Astar(1,2) = -1;
+    elseif i == n
+        Astar(n,n-1) = -1;
+        Astar(n,n) = 2;
+    else
+        Astar(i,i-1) = -1;
+        Astar(i,i) = 2;
+        Astar(i,i+1) = -1;
+    end
+end
+k = eig(Astar);
+
+lambda = sqrt(k) / dx;
+
+fprintf('lambda_1: %6.3f\n', lambda(1));
+fprintf('lambda_2: %6.3f\n\n', lambda(2));
+
+err = abs(lambda(1) - (pi/L)) / (pi/L);
+fprintf('Error in lambda_1: %5.2f%%\n', 100*err);
+
+ +
+
+
+ +
+
+ +
+
+ +
+
lambda_1:  1.047
+lambda_2:  2.091
+
+Error in lambda_1:  0.05%
+
+
+
+
+
+
+ +
+
+ +
+ +
+
+

Example: mass-spring system

Let's analyze the motion of masses connected by springs in a system:

+

+
+ mass-spring system +
Figure: System with two masses connected by springs
+
+
+First, we need to write the equations of motion, based on doing a free-body diagram on each mass: +\begin{align} +m_1 \frac{d^2 x_1}{dt^2} &= -k x_1 + k(x_2 - x_1) \\ +m_2 \frac{d^2 x_2}{dt^2} &= -k (x_2 - x_1) - k x_2 +\end{align} +We can condense these equations a bit: +\begin{align} +x_1^{\prime\prime} - \frac{k}{m_1} \left( -2 x_1 + x_2 \right) &= 0 \\ +x_2^{\prime\prime} - \frac{k}{m_2} \left( x_1 - 2 x_2 \right) &= 0 +\end{align}

+

To proceed, we can assume that the masses will move in a sinusoidal fashion, with a shared frequency but separate amplitude: +\begin{align} +x_i &= A_i \sin (\omega t) \\ +x_i^{\prime\prime} &= -A_i \omega^2 \sin (\omega t) +\end{align} +We can plug these into the ODEs: +\begin{align} +\sin (\omega t) \left[ \left( \frac{2k}{m_1} - \omega^2 \right) A_1 - \frac{k}{m_1} A_2 \right] &= 0 \\ +\sin (\omega t) \left[ -\frac{k}{m_2} A_1 + \left( \frac{2k}{m_2} - \omega^2 \right) A_2 \right] &= 0 +\end{align} +or +\begin{align} +\left( \frac{2k}{m_1} - \omega^2 \right) A_1 - \frac{k}{m_1} A_2 &= 0 \\ +-\frac{k}{m_2} A_1 + \left( \frac{2k}{m_2} - \omega^2 \right) A_2 &= 0 +\end{align} +Let's put some numbers in, and try to solve for the eigenvalues: $\omega^2$. +Let $m_1 = m_2 = 40 $ kg and $k = 200$ N/m.

+

Now, the equations become +\begin{align} +\left( 10 - \omega^2 \right) A_1 - 5 A_2 &= 0 \\ +-5 A_1 + \left( 10 - \omega^2 \right) A_2 &= 0 +\end{align} +or $A \mathbf{y} = \mathbf{0}$, which we can represent as +\begin{equation} +\begin{bmatrix} 10-\omega^2 & -5 \\ -5 & 10-\omega^2 \end{bmatrix} +\begin{bmatrix} A_1 \\ A_2 \end{bmatrix} = +\begin{bmatrix} 0 \\ 0 \end{bmatrix} +\end{equation} +Here, $\omega^2$ are the eigenvalues, and we can find them with $\det(A) = 0$: +\begin{align} +\det(B) &= 0 \\ +\det (B^* - \omega^2 I) &= 0 +\end{align}

+ +
+
+
+
+ +
+ +
+
+ +
+
+
clear all; clc
+
+Bstar = [10 -5; -5 10];
+omega_squared = eig(Bstar);
+omega = sqrt(omega_squared);
+
+fprintf('omega_1 = %5.2f rad/s\n', omega(1));
+fprintf('omega_2 = %5.2f rad/s\n', omega(2));
+
+ +
+
+
+ +
+
+ +
+
+ +
+
omega_1 =  2.24 rad/s
+omega_2 =  3.87 rad/s
+
+
+
+
+
+
+ +
+
+ +
+ +
+
+

We find there are two modes of oscillation, each associated with a different natural frequency. Unfortunately, we cannot calculate independent and unique values for the amplitudes, but if we insert the values of $\omega$ into the above equations, we can find relations connecting the amplitudes: +\begin{align} +\omega_1: \quad A_1 &= A_2 \\ +\omega_2: \quad A_1 &= -A_2 +\end{align}

+

So, for the first mode, we have the two masses moving in sync with the same amplitude. In the second mode, they move with opposite (but equal) amplitude. With the two different frequencies, they also have two different periods:

+ +
+
+
+
+ +
+ +
+
+ +
+
+
t = linspace(0, 3);
+subplot(1,5,1)
+plot(sin(omega(1)*t), t); hold on
+plot(0,0, 's');
+set (gca, 'ydir', 'reverse' )
+box off; set(gca,'Visible','off')
+
+subplot(1,5,2)
+plot(sin(omega(1)*t), t); hold on
+plot(0,0, 's');
+set (gca, 'ydir', 'reverse' )
+text(-2.5,-0.2, 'First mode')
+box off; set(gca,'Visible','off')
+
+subplot(1,5,4)
+plot(-sin(omega(2)*t), t); hold on
+plot(0,0, 's');
+set (gca, 'ydir', 'reverse' )
+box off; set(gca,'Visible','off')
+
+subplot(1,5,5)
+plot(sin(omega(2)*t), t); hold on
+plot(0,0, 's');
+set (gca, 'ydir', 'reverse' )
+box off; set(gca,'Visible','off')
+text(-2.7,-0.2, 'Second mode')
+
+ +
+
+
+ +
+
+ +
+
+ + + +
+ +
+ +
+
+
+
+ +
+
+ +
+ +
+
+

We can confirm that the system would actually behave in this way by setting up the system of ODEs and integrating based on initial conditions matching the amplitudes of the two modes.

+

For example, let's use $x_1 (t=0) = x_2(t=0) = 1$ for the first mode, and $x_1(t=0) = 1$ and $x_2(t=0) = -1$ for the second mode. We'll use zero initial velocity for both cases.

+

Then, we can solve by converting the system of two 2nd-order ODEs into a system of four 1st-order ODEs:

+ +
+
+
+
+ +
+ +
+
+ +
+
+
%%file masses.m
+function dxdt = masses(t, x)
+% this is a function file to calculate the derivatives associated with the system
+
+m1 = 40;
+m2 = 40;
+k = 200;
+
+dxdt = zeros(4,1);
+
+dxdt(1) = x(2);
+dxdt(2) = (k/m1)*(-2*x(1) + x(3));
+dxdt(3) = x(4);
+dxdt(4) = (k/m2)*(x(1) - 2*x(3));
+
+ +
+
+
+ +
+
+ +
+
+ +
+
Created file '/Users/niemeyek/projects/ME373-book/content/bvps/masses.m'.
+
+
+
+
+
+
+ +
+
+ +
+ +
+
+ +
+
+
clear all; clc
+
+% this is the integration for the system in the first mode
+[t, X] = ode45('masses', [0 3], [1.0 0.0 1.0 0.0]);
+subplot(1,5,1)
+plot(X(:,1), t); 
+ylabel('displacement (m)'); xlabel('time (s)')
+set (gca, 'ydir', 'reverse' )
+%box off; set(gca,'Visible','off')
+
+subplot(1,5,2)
+plot(X(:,3), t); xlabel('time (s)')
+set (gca, 'ydir', 'reverse' )
+text(-4,-0.2, 'First mode')
+
+% this is the integration for the system in the second mode
+[t, X] = ode45('masses', [0 3], [1.0 0.0 -1.0 0.0]);
+subplot(1,5,4)
+plot(X(:,1), t);
+ylabel('displacement (m)'); xlabel('time (s)')
+set (gca, 'ydir', 'reverse' )
+%box off; set(gca,'Visible','off')
+
+subplot(1,5,5)
+plot(X(:,3), t); xlabel('time (s)')
+set (gca, 'ydir', 'reverse' )
+text(-4,-0.2, 'Second mode')
+
+ +
+
+
+ +
+
+ +
+
+ + + +
+ +
+ +
+
+
+
+ +
+
+ +
+ +
+
+

This shows that we get either of the pure modes of motion with the appropriate initial conditions.

+

What about if the initial conditions don't match either set of amplitude patterns?

+ +
+
+
+
+ +
+ +
+
+ +
+
+
[t, X] = ode45('masses', [0 3], [0.25 0.0 0.75 0.0]);
+subplot(1,5,1)
+plot(X(:,1), t);
+%plot(0,0, 's');
+set (gca, 'ydir', 'reverse' )
+%box off; set(gca,'Visible','off')
+
+subplot(1,5,2)
+plot(X(:,3), t);
+set (gca, 'ydir', 'reverse' )
+
+ +
+
+
+ +
+
+ +
+
+ + + +
+ +
+ +
+
+
+
+ +
+
+ +
+ +
+
+

In this case, the resulting motion will be a complicated superposition of the two modes.

+ +
+
+
+
+ diff --git a/_build/bvps/finite-difference.html b/_build/bvps/finite-difference.html index 1bdeb27..5625021 100644 --- a/_build/bvps/finite-difference.html +++ b/_build/bvps/finite-difference.html @@ -11,7 +11,7 @@ next_page: url: /bvps/eigenvalue.html suffix: .ipynb -search: x y delta f t prime equation frac begin end right align boundary left b derivative dx infty m difference xi fin solve equations yi l finite c conditions where solution n heat transfer lets our ac point system condition nonlinear text k p ti differences mathcal o example ode points linear matlab h exact using order second consider gives domain through formula term q dt theta well rightarrow approx into above recursion get bmatrix hand guess temperature d value also accurate five set mathbf implement fixed octave because e control volume method approximations derivatives function approximate forward backward taylor +search: x y delta f prime equation t frac begin end align right boundary left b derivative dx difference xi fin solve equations yi l infty finite c conditions where solution n heat transfer m lets our ac point system condition text k p differences mathcal o example ode points linear matlab nonlinear h exact using order second consider gives domain through formula term q dt theta well rightarrow approx into above recursion get bmatrix guess temperature d value also accurate five set mathbf implement hand fixed octave because e control volume method approximations derivatives function approximate forward backward taylor series comment: "***PROGRAMMATICALLY GENERATED, DO NOT EDIT. SEE ORIGINAL FILES IN /content***" --- @@ -699,12 +699,7 @@

Heat transfer with radiationExample: linear ODE
-
clear all; clc
+
clear all; clc
 
-% target boundary condition
+% target boundary condition
 target = 8;
 
 % Pick a guess for y'(0) of 1
@@ -234,7 +234,7 @@ 

Example: nonlinear ODE
%%python
-import sympy as sym
+import sympy as sym
 sym.init_printing()
 x, y, u, v = sym.symbols('x y u v')
 
@@ -364,9 +364,9 @@ 

Example: nonlinear ODE
-
clear all; clc
+
clear all; clc
 
-target = 1.0;
+target = 1.0;
 
 guesses = zeros(3,1);
 solutions = zeros(3,1);
@@ -443,9 +443,9 @@ 

Example: nonlinear ODE
-
clear all; clc
+
clear all; clc
 
-target = 1.0;
+target = 1.0;
 
 % get these arrays of stored values started.
 % note: I'm only doing this to make it easier to show a table of values
@@ -474,9 +474,9 @@ 

Example: nonlinear ODE% we should probably set a maximum number of iterations, just to prevent % an infinite while loop in case something goes wrong - if num >= 1e4 - break - end + if num >= 1e4 + break + end end table(tries, guesses, solutions) @@ -529,7 +529,7 @@

Example: nonlinear ODE
%plot -r 200
 plot(F(:, 2), eta); ylim([0 5])
-xlabel("f^{\prime}(\eta) = u/U_{\infty}")
+xlabel("f^{\prime}(\eta) = u/U_{\infty}")
 ylabel('\eta')
 
diff --git a/_build/images/bvps/eigenvalue_14_0.png b/_build/images/bvps/eigenvalue_14_0.png index bfbe31e20d881896638ce03cf0fd4d120f8c875b..c64b24ef0f6ae0929ec38035c3a765cfd6e79426 100644 GIT binary patch literal 19563 zcmaL92RPR4`#)}Fk2_K}HzFC?B*JZU%PN&U%1E~C70PWD*|H^6LPqwMt+Hn}*%1;l z|L3jG=llKrkN@xZzmMlRp5wW_=XIUedA`oq`8u!ATN*bgNEt|RaBwJ8(280(ICz3M zIJjBFc<{^Xu#gS-4~ZjM&lv}YvKjj?ZX7QqBm79@qN1)u^aGEPNCK}d{hbc{#Ob1> z>vG58p^N(iCkq^P`MYZJC_c8kk1W{KAGkcyad5J6=3`T_HxrQ7ouGsB*|Fy!=uWVt;FDxi5$R;czB_<{%DBLF|33q41QBjn?>yffH;ca-=;+SY7 z_<)>1C?JXE4gUN5c)R%5%MQ+2IO;mTwPv*N^slH6m;KDnT_$|L7N1xtUsXxl(=t-C z@ciQHN>7;$-s~G*HYs6a#1%pOAQ2A9jf1%n(Qggy77HnhR~LUDlLbBKnj2o6@lIRa zw03adhId8%K3@g@!NIU0adB`iMn>Y`_>-d1cs5p6iSs|k9P0D)^HarahT?d2s#;sdD;fxY5S!BM$5l59MZukA#ubR0GYH@LKIBCMP$OC)N zR_oH%wzgm6mCozqmGuV`zw`|Z-f5&(dGFd!l1}%&MSgQz({S?f(SEvB|SFoqtJKm^jA7B5>m17z4~J3aLsk)?xRObM(z_9 zCjLW1LowW%JFCOp8Sk}oORK7+*x8>|OZngGgvWpRLd7EezV{I^@=D#_>~v#*?D5`Q z&YgEo4oig}ovsj`IYYrD*|YP;nYU1kHK6g9fq{3o%U3% zXkB_<%kQK+F7+T$?KPgiYiesrkThIsx@ETXyRN#rBSmIyFihq46CZ9}s;Q|VMivzn zS$3t&`0h4Q$&!B^4i+k;^MyeNMdAERFsL&rjoLcsXuFDzTwPi2fA{3clUICtTQH7HGG2Fc?g|)I6n@ff5KD*IXCMy(lev8Exy6@w*CElL zs)269jIhq;sQVIx%+mh$!U`HorPh*{m-qHQD6<p| z4MSqS!Uz3c_;&T`Rn{llQRU^kzq@5mCcS?>Wt&5J3=M1jX;`@mDw?u;jNEV z|Efzq_}txH0EYDG?F{+aN6W~_kp}g1adC0sbV9STCx5&DtPW2-*`1I*oS_2a@!Rgb z;k}cHPe?B5y_45s8r5NriG2Q?6xH7F6rY2gecS5@oEaV-9x>9;BpmTZJNMq@IOBpv zt?Ay(8{x{C2FI>AGKH4iX@j{sCUriEx$her8*_4U;Ek$1Hcf+FODih&evW>UaG3mY zyyP%a*k~>cW8IZ{ZPBNtD@nQh^+ct=#T4J@C(CY_N0@DxpCAfGWnZ9}YLun-J$0Z-nHiI3A-EZ)pX$p4N z)p@6${7{fCp5MT2zBBIGvuCut+T_eqC7-l=W@xY3FibpiTYTPQ7Nlh0B7Y zN~i4F+9QZWvq5Ai1%*3WT8cH_i4r!xNlYEiUZ^iT5@Qs37-l#0uBmDt)^T89;91n& z%Y$F8)PLpgUM-}R6ivsDGZ=U6@3#*EV1*j5Nvr>-xYvqY-4sO zICJJ|jqm1c%k?MwBZSpPEJ56c+}K5IJa;~NN{l8`(p@j zaPG>X0KQy44b}gz(}mLehxxU0U57s!fhFI}-Wsky7IQye5Q}7+X0Q$sY0i4(Sh2#7 z4M@9FeypslCim{S!n$I<=BB8mL}GLa`9CL?W1j4vxp)lmn}S(tJN@L)68sUE`0U)A ziT9dV2H8bU0s=z?ipN0-+bj#g)Xs4Gld#D|-T|sqyeWW&}wp zsCiL2qcI3mK|1iVmfrVuPL7W#2m^kP6&Dxp@eg6e6*+x+M8`(`M=7NQc=R(?@X z`LvtYO^C}YGq78$=nM(Gb?ZxJMmo9*>%kB3{xaS>Kd0(tuV0_6eMKkZwH-z;GJcSl z7U1u1^B&n%MNMPk958twzG~9v_qWNoC^x!d4oqZEPfw}MFa$7R0fDZuG4HJ(9dNAI zD%#rGI`|qnl#s_8ac2d~9Id0|8pH^#LmH*|Vux9@bWCS0t=Y01BCZHM+26+A4vj8v zZfld>88Q3w=MQ)t=9h;zDd6pI8)M(z1gC%`)CI}qyFgegl(48JL_o64ZES4(ODft|9UWk% zE$!u~azxN*+lGoy_;7O1N?6j;tqj#(A@veGgD9y0Of$KOelQ#6nZKOnHsKexGp=MO zlGfR34u!8{29TVbgi93Xt%;h?JoWb{tGwu%BXk)q&XFfgjWc18LLcq=(nv(E{8@fAzg_{LUET6l5%nlXYxNrEwE4{74sv_7;+TQXmZIHB!}q= za<4^VBZeOj+)UI*DsXquQ&Zz_E0dMl=)&{lEVpj1XqoPl89g6U)eLLKuT4QBgKcG(nq?;+iT`W+PH=eVq)qJArHn#L_L}j_fc3aY}z3UJH2f zyi#X>OfycB#64m>+^3ZD@dMenWS^SHq#+Uw^toMlmY!i0t6|8u34bEldNRH~5rd0L zqZ6;u+FL2ulQ{KhMn=-T*6s`xz%zmgj5pAK)z$8is_tcK{ty{2en>zP>ZVks-0A*z zlN=Y<5=JZO(HVsaj+b2ePybBqL`FUe?p(ovza$2Vspajs#ZzZ~-gjVxF%~Qei_;_~ z9)We28LBO)&s$+SC;lP;qj;^h@$la*Y!j;5s~BnY31*P>8C+FqDjI*u zhP6Mv%A6GnZ`*JANI1+iA;s!O$x_{HQ)~~Lt z=J(r#pJHG6b0B-k{{5agNH0Qa(>x$Ed!Iy-n!2_`Dzn`l$D0HfS7V_rDS%9w)QB`< zy6Q>vHx)EGwvUl-1lO7h7njn#=Vge4dc`0`A5(<_>P@V+<+*QL$Z~iR0+y06sf|-~ z5SbBzN{iQGnS`1dd(K^B73Kw1m`^!kl`jR775B52u61Ik6~)!4pc55&DSJ@txyP+H zLeW z3-VUO2#D5UYB7JlQ6dnbF$4EgWpXHB5PFGMlbPArwB8QVJFBi{iRfBtTI0K;(F2Vf zeoSm^)ZE1)t5v*W%GsgXXmjj6rB3e|RZPP8Me9ZmrzBh;Wnd8%`95<{?2W>GD%>c( zbxlVv_S^_=_Y2D@kApFa7sxfQ%E@u6Iuxpnc$^yz0prPfsTF#i8yk27^&NdwQ=dmCn@~qq(%pyt66) z`y-EYIx%bAqQLka3uo08j6lc@Fd%}{2aqHc7ODAkbGdVXVaA9`e=1aVC?qyIzY7C+ zCg>gZOS8ail*zP*DtG2KDQHm_nvZ+}1#mR;v{yeGRbS@ijk`Ht00~w|2yw7PECkqB zug2=aU%X%xeS}EA_?0(Db!PL|74WQ^CJGgQ1-RZVO@hg%5s%9bSuNs=Mx!BTk#wAHc&nZ~J39+m(p$B}t==1~wVSPs zJHH?+OOo|FhQ#*_53;-I4l!{>s~^S8!)2?wsdxEm2gSF^UZoGJ}JV)NDG zGKPk<(^M1mbYrOd)62hLqjk5KqC;WUyiQ+A zIB{HlP_-3J|MP1q+mYmi3iZB6HMI^FQ^!XKjO2s|5=$;pxr6&#U#*FUYowB4bPA~M?vuAY* zjPnZ$7VGl!@?3Na{?5NLsXN*kD|1LrPChz3+~YB@S4q`J&UvPSoBX(`tpKhJT!_%- zl)7E+*?w(370xWM9YR9FkNTw_%F5h;2|3vP6%i4^jmgt3nuW}Z8v}>W;bz-4x1SZh zNBd9liAYIFsi~>q=20J`PA0^$mZ3>8L%6D|r=jAUJJVJ1h0pvrr#PCfn2dtLsM>9< zGmdv|b{3E~B+w}-DQd){wch0&<~KDo(j*_7Dk&*>dF?|kfscn59TRis&Yi#5_hvq6 zbHf^ntQhB~$ZV0-NA_Zv$XL32`o4kMmRX)0!*(j{$g?QGl~_E#zrQ~{eSfU|*XCTC zor7+T$ENC)T600V&!0d0`1tJc#Q9g-K}h@7FUIL?Lg8#V)H`YoD1h&x^86&p)ngUY z_Lp<>^MmCMCc&O)Z^(>}_W#U%Vj!s=BZRqt>4g|WcxQrxk<=hu-8$@Mexy(>zY2;Z zRNS!k!762MCIYcMJtRzQM0$2sTY}i=d71)>S}p3Mkj&GS{AFncInHPKrR27^c`YDh zR%>ox{|eveg}(znwVm(W82#W~70r+zT~cSO*kqn!ILYmI(n8lR9D?_IHf9-gjjDS_ zN+paE{4NRpr(LWkmfH;>`so%O8A&ibyK&13CC7<3!Qoptrh-CI%NciEief$#`Q z+NyKW;=YcTywDpowT*8E#b&Sf65>Wt=6^hUbpJsPty67OxCkaPaxYRZWb`0iUXGK! zV4M2o41!4_{BD-n{Q-zfRQjoByHTYuT+KYrul1kWa!RY0JPW-INFidbE4Eqv4Fw)M zPrwGN`qRw-1@#9CfdVaSNTeqdmn#fH-vdg<=OmmA?`gM^w*)g(AA6(GY1xDHLf#G# z(_)7j1YH7odKp46oSvQ+UkMB9nG)efy-emiJQGV?s`Xa8bLoUt9<`Nc__OTqRRTpR zwFe4fbjjI4`be8>-+?ZjCA<)N7MVpD4~9}L0hhDW=S#IFFK5aiGlGA}dtQ{xU9&_W za2#<-I_^}Adc(BK%i%PLadK)l{;UN^jAN*P+B$bS`KLceH2nM7o{Xe}xGzbqo){3~m$t;JgfQ+GIO2i?CbU(cd4PSd*de&@39gkw90#fkxX0pPtW2DZ|MC zC!S*e3K>pLiKb7q5J|PpkKB54o+K16@9+v6vXZ8JOc@|Q0dABexW4idjU_Fd-jy(g zA6)+ic|BH7H(){>Yg1sUy2En#`5%QW&f)W)CF!sO%r$wx(Vmf!fPj$49CCs@8^n19 zd|G%3xCRyw8wQY@@a`b2Sry(svEt%FVz{hutQ8jz4}*a0VazNLW>Js+y&TFZ0$_6~ zDriC++@0eon(to;LtRjOQxWB?tUVbk`EH-KEY?bb~J5+l-3Q=1=5B+HhU zFJFdi)obI$xF>=Am56C@MESg8iZuC=cd2sP@>^*}7_Qzx?W;U_a`fR|?#|lS@Px^^ z)h1u;c`w8i^J5`aQR{v0nbV#lf%P~KwDlt);L1LHxSTsEW!@gSe!Q+15E!S#XA}(C z;lu|dkI+&77H>aIV&%PGiIXJ^n(bz5Lf;^x%QLR6%Feccu$-NpJ#jP<_Bknu)=cL1 zWnA#J`sLOkT>6dtc8Fa$dk6jSvB%xWYZcS-0IMnB+Hvn+wU|hb8!s!~tF*MVjQ4Cn zO8U8}sq%u1l=MAAL!Z5k2kS3JMszg|--tj|7@A=CY=`dS+ptAZmj!KC40@oj`3eSI zmPEb~>GcM}=}zeliB!*$x~j7fp9Y79oEW2}Ypb4SFqlqROC!s(1THGK+>#@%mdOGN z2MEpK;bCu2Po*0-f-#s4$KHPt^lHsguM*$P%*;6LvR;W9748FK3Uw|SWM6+O=e`X( zIKOob;+`MV``0pTJ0q%SU_mDUG}Ryfxstj0&LF?;$-$&^w+ygq_4|Vbdwf{OjKpLp z@uda%-wH|N0?-MrCe)Wp#nCI^VtLlbqf|*45<9+&S$E!PVBu0QC9~I3Mlc|$^DHda zf$V|<%ea334kvs|mpy4DV)gkmr~~X-hi24sm+(jWV6-24hRg?U>Opp;?|X5m#^dh8 z2kL~^yd!=V#YSp>G|bV?bzdL93ZqIn`qB0sKR>?<4iyLM)qW=jQ}sal%hWZ)x9*NR zce`$Wvt_0pgqiApWFySf>mKceppm%wrJ!AffoovUJ2V?(Zle#hH-H}q+$H+?I}Yt# zU6dpwk0Pr4UkBO;<=55S9no$2 z$W=Mz20;9b^B2`yxwx%79zLK*<6L!1Jg}w|n6@IEpwV4Hj>f)v#eMOjg}FJg0XZyX z?wq*{PY7)9l~iJiAav$r-i6HaC#Asc5QDkS?H^1rGFdQrP>3NmAWUI})H8#gLcLY~ zX4p*!LDiLWj+!)$R!`NqvficpRuvXHLL~yIIIe4JYil)e8R+5mvC;&8|DLcQuDOOX z0>k%sA!_=*7J!!fCpbPYMH&Is^u)&p$jXI{{S1ZR*qaw+Er4I3vnve#ca<7V{xpkf zd1?tu=mD;-cw;$)28{FNN{}mfWjnId`tvfPR~hY*m6|J@E9({)}x*J4te9 zD;1^E{Bro$C+vygX2M7#K(|+~>NUh2>lR_ZCS_Xvtq7nL8TlV$(bD1GTN#qVQZdfx z`osAvyq7N%@cG}MDtUMo4|TOMIgAXlzGZ36p|uhzGvx;q)r=8Lf};vaK*0jFf8mPp zVLL~}-rnAbv8I~Z56c&<1`#=nxc@G-Stg0H`b#_KN>{NeJ|w|%^*#@BqT(?J8=F4@ zR?7KLqlUMz$NiHas1ESN-5eW}CL;O)o_|SEGv={+er$I0dqKxxBU6UFxx&~;EiEnJ z-lOB=%iPw!L-kLx9w{m5F;V3TU~qrE`j@m$82D3)pm#sn*aqHYb+{;5hkZZ~htRqk zy*tfw72`ka-9+bV=X>o=xP$RY+mBbAup-`(9%a zhetTFv4fa@&d=@&_Y+Z!*jf|}a*QX42ELS^v5 zg9lJ*5~kO5CrxN@_xHc0vBA|3jEK_8B><_}l5T?@A=;K-`SWQkzCXNz90eRLz1^d5 zXmWvO55kW&@t}Ft#f!>u@g`4G?F2#|GUkbJ?IKBt*P0;!t!Ha@Za9)&0LL|WvvQAc zRT8LPxmTx2f}8;m7-vOLHP!*ely@mDk-1#oXKdxgkx8gDRbVOU}7W`?#k>ZtWTaB z7x;m41Ga-koQ1YO(KYn}A5!LU zqlqhK84AS|#KgdImaMs&m`p(ok(HH=Fs?-pzh8eLTPG_ox5RB5vn*pzTLG(V_g0(@ z%q_bIgRPEWe5CP{Klf1W5ILU(1ekcv)20=Cl+YJ7Yc}DoqQuQeFI0cKTXAn15?^MY zO?j)G7Rc~J2w+6RE^>CQ7StOX7##c=Hc3|FIv9SZmN?t1@Zt~QZ{qGJQUU*FX&eRi z{Zb3dA}!>|Vl9-@HJ&<#WEqOHP)7jANLiqnAlR6hpL>rb=wcVRcI@Pi!{h>fxL84U zjlZ6q+bY4ODhPa0_w@rlc6L+9FBF2vi~J_~BN%Kb$YV6VEs+vnXi;MH?nS4`XU z%4_;5(MwiY0T&*e1msIDj+{BhEOFho2Ttt*LPC#cJ_lZ@*?6X$38n60zlltVCv+K3 z{{Dri_gr&s;|&vgjqH9Q=>$ZplGyi_Jvjv1CxYs<$HwcU)w$O2JD1~7aisqGZ>)sJ z8;lm}7{1~4a&hM5=Y483N9n^_PZG09F{y`=xwLz4@)E@%6W(Wpd{S6&Rx2Q+6~&s_ zmt%yy-&)~CNr{O!wzj^PJ4^wEA>pwx4aPL-I&1{Xo2B+quC!Wyq$%w(`M>KILp)ki zwJir2`Kd<)@@y9oX2|xc{0wYNpXdpccAPlarFFJbypbG||a#re1`U zK^J*9W-|pCrpf!~N1J#6G(LJmJ8N7p!w^G~Q&O^>^DeE}Zu9r%riz9}9h7QZT}unk z;J=R9OA6EH0c!VLe-jTRkjf9jW2Oxj| zMJc(dk;I6r+Q(uT3Mto>f#KDy=RR@O6*_c~TLIn2%#fAz_WuTQ?7 z(2PIpz$g;`ZDKu+Oi3{`Hl7?A0sX>sFstv#@T);TG90Sr@8*!L!SWG0B9L7-By{`o zOPPGQ{XO=$l%a~-Kz>`C{%p!bq>dK%X!s4v1U2;kfCd+jI#o9}C?$jh3wYgOdE3fv zd5xG@fxt?*rdN?yn9K&!&xN;C+kk3Tvua8Qpz+ib}iFeNWfiV_X#Zdbb;Nyd0x8EWp;@uumC7hb>&k$FP*3BtfK}a5E;${ zuJ`)hH2#$<1s7H0CBOE3mnH4j`4gke{Ew+WnURKfmj-)&EKJ<=(oa9L{j@<$R$48(TDcDpw43=GHiuodl;G6vh&hB^)#WCiK2h0?z|w_b2>F{#4K*N zm&8E4-2KGJz~GDK>g?j>E(9V9EMsIYKPZe*XyliP#k(V;Z{eQkVYA};uEnD2vAs|d z1N9&kaGlBMu?-BH);1*%mvF~xN>Z*K&*ZV8(M=lH;hRZ9+g_-p4H zeR`w63e2M8Mh0Rgo&HC{VUO?>~(LzK1qSH^5K!4?lMg{DdnhqObiB8Z~Sr2f&n zU=*PO$&ZHR5(1_jyuFHwis~zY37Bx;)goAA_V?x@{B}kyCyr8}a_@8ecM+JC$jAuU zV-Mh?K_VsVI4uVwib6g6eQ=~kL2g&Qic6rFhp`rZHa+w`b$*pDYQ2@SU^`l$r)j^6 zQs}CAx##Z%a8vLMzpV~#z~|13U9~V`;Fi-p7ZS&gKOXVVtWQ*{bKP-r+5%Yt0N=j; zevp!}AQ0fQQj(HZ4y%0^fXb%l?LOE5Sr&7c8)ws;cQ; zD?DS`IIOJcKYsl9mMo#8qeI0kHPCY9IxLhO10e{M_6J^&Xs|d2C!FG72bpakeBCAMz{9uFYD-!!qzZ1S*jUcP zvpkSz%xVImR7gU7N}OxHZ_&b#+HZp&_N8WTq$AD1i3A36&v#- z3i77sLD#8RAWWT-u@egpgME&3JhzKfo&ek6tF|q*ZhE4pALb=lrRgZ8)qaVgtWjhRf6ce@#apuFG9{D1F(qJm-jRx=xzbY5gAUVu4sXt!o%>?}y2I1h4w#EBU z{Xgl)MtAps96AK(ZMpjjV%phm;FLu{76dt+&qgEB$zGf6n>TNwqoawD0Yp?~sbRBL zWfQO8-(w=cI6ae~PorIC2yRz*;o<~Ruv>2(-a7{{3Zz(283M_Jr>7@KfwXhQkjSUq zV=_P!jxhlb`0ddnVV_R^9PhZHHcW0@F$bN-5X}-P!laR zz5r&1o&F83@~oE#;gBKxv%p$fv(g9ANHuGrF7xwaOFWxFpwrUgn#(zF{e~8(kVC^4 zB*esl@2!P>Zie5E%H_rg1oFaT5UM20kQ;+wMPO3UbIW{E|CQZu3Ts*-+ziA$^&kn) zi>~lo){mq{FS{N{W{3cjl?{I0sA^zm4b&q55&(CAI*lMPxrN>ylGX1(RqbUAim@1O z+#lLSy~=ckr;w|XbQrt2?U#QdVU?RbKPEy?`Xa4dX0Zo2NKt4`(Cc{HvC!PvW zGvI!VK#QGY6AAD>J-SSSm8}mCcGdtXZEkL+`)qZ9a1nevz;P3=<%?-AptA6XkW3u& z{a;4D!B$=(aPe(@Pj*G^c60l9pHzmbJTsR!8iqeYdaJ$4b+y9bMi^a&b}pD5EDsN0 z4}NQt1FQ+9Y+;L|z(euhObUDVcy%@5y{~m(%Kg*+oJRlm;1!tau*5_15poUYe&2+d_WH&XE^}u{nYHb!p9f;Wgc+3^eciJ z3;$t6Hs1ri5hTULBXl|J`_=nS?dz~=kD-DIdb_KD%t0v(+R63NPu$|-J6Mq@vUzIC z58T^fEP+ib@DDC;-gS6r02yT+_WWAQa}qKUzWuK-b_~O9!oGU~yvuy7y)e za8s1b?3lg3e>X>~0IS2`ijr;Y?w%*Wpzey%Q^B>ldP3R|Ff_ePIbYoXjSWBCXLY#1 z50*L12>*!IG|)|88?7`IgOlX05t2}*l2X}8NKx1V=C!DQXlUWLv(I_LZdF%cIzm2h z&5_UtiskWHI!30^g)&Mqa?xmk&K%KoI}Yy zQZR^ld_}qX25^QLMoCKW!!erIJHCF+D=3f!Q`OMu0{thjN5zmw9VjXK^eOTdmV5%+#hyAh|C z-n(QgY@dM@IIJi-vKwmjIez6lt4yP%sEE$LJmxDMma!@~mG=5Q=|}zbqpZ9h&*e6DXU2F0Ovn#6b3C77!rmL9*B^5%(!JvSLxFJ3(j;;5Go< ziwnpCuu$|4jnyc(^ zeKe#we0nHiJpf0b>I)RmAnK!G=eE5})0o8SE-!~s@{3uf@6EGtY?X;;=dahwJCPes zFdUHM|5^VSsP!?BMF22hUw3QKJGWFfp&PtUE%&VFQy>lzO3 zSp<#xTZ2BN6L2z%3qwHW9*i=-d7y+b zkqr$EX-{4cT0dDxv=p};xi6duJs7#bn-~@h?^bwN2O2t*2+DAW`iGFu1EsoTqPMt{ z06x6p=`{)3NL*Nezy_~DngCo75X?0|_(1wmY~BG_fsm4Ehmjf~(Lbfm?1;soicLABG1EbPI#zS`HuN_wlRkL`u(qRsuRPNkA1bkoHan(!UPo37f zDh)1QhoW85m`#YtIxfw`_ZJ+t6q~oyPM2F@+NriB5|Dkft+?#(uOjXfuEPM!CqUv* z?(^1;D}5_*gc5r_w{-|UsPKlyLvNV90j<_d7?izH#DB-8j@=;Nr(hHpmB1b}C^!IC zd;Kl?+4X}1t_-#gsVzBt4tll^abKB~*OwEZ^a+f0b8Q8h!4;#j~Cgo7Mviw_&_wWlNT zpz>>&Tv){C8v8uIQR@0*e0Na3c?Bpf6<4rQN4G)Aq6Z1r%UM=DN0wR&xV*BP)>wLW z`nS=CTi75863fWR`-z2{mx^!eIDRUe#meSp6(ESRXjy__&k|T@;L-(khn2<~Qrig` zL1yqeRQo>H6blFzE0Uk^)&HzwC0bYf(*SNI4MwMVxPG02fWY>Y4OEACl0o)4VSp}9 zA4zlP8VWTV%B7zHYQ##xw@}kBe6W6t&@03iE1u()6>x7=JLZS-v#xaPQx_82T2L#nmqX1m zKHS2pMPe%p7N(y?pFI40&Cd^IHE&<2I>-JF zgr?uIVi>~Hhimz-pOqcKs$NJ4Mg9V&?N!(fkuc;At!x4ggCOAa@`?=aW^VgRW@l9x zB!VXJ0IBxps@O{8`bozF6IBnyulZj*i?oJOd-B`;T`_S^36oZycW=02YA3 zoZdtb;L}f?t1t07p?J*QVKwYww+QJIS3JAQ~kBZn1}v-hgE8 zHgU)v2+`%msWCtsGq?1`J9BbAEt2e7#s1|-{Lq8a@>~CuGZI)C&djd@W&%Yu$c~`6 zsO?P_nD42_$vFd>m!I`e>j@!mUB!UDe~{FiW2OlE(9rX?`CUJ7@z^N?dSu=-K$=c# zd=~X;7AqBQ99mIhVPj*z|Nj-woNHu@1N7~h|MWqE+#5w3Hfm}YBElTV=G3Y?KAXse z0+_PS4m&d-~rqaI)}0no6FEX{RC}kYkUGd>>#o4v)g2hEtdU4@u|>qAddaanP88 zo-@-bs;XZ=)%hVe7y6=pL&aeG*RQ?9PSAIN5OS;>1dsuQ6tm@F<*+)`T^{vXb*Dvz zfhfa12iVKexij-;74m~_M=v4u@`o(bJRd@D7}UR@=fn#%c7METo4m_xN4HuonE0Gz z^6GpfzTIcgN5diW9f=Jd(eV zisWNJK>)Cd{50>~8-zd)Ne9ne{3E40)5@em(TJ+(v)q0QY>|~r5)BvqQbp=bAegA&>mWspXw!S5} zSZ7s=O))W0^VG_7x>J8GWgzkjXnD1NJr^X3z#qafJ`7?LKvKyv-epIOE>fugIY6t} z)YNpvumW-R>?Tm~JInoTGtSVU@u|3&7zwzRn2KumQDS9j*HemjfYQGjNr{UO8L_^E zv0VRv+zMK8m+hm9H(JaHa)hg7?kecoiv4KwPbnk#n@G2mfAdXnvz3Fx6hu*IW8_j# z5`_-T1J;QePiN>{^WI%QT1a*PC1aSf85BldM1084|Ks?e158vuwKww*EvWv+wG=Am ztUcZ%nKXwHW%?9F}#aH@2n={5){s&PNN-r3K8u#7xUB zG_2L`PX5-#WgZkw7_>QFtIWlQOap85NUV-<-PO4w;i}nChR=q%MICz!YVhNdgD{u{ z^pS#D1R=JdBnfIvY(we{#s5j(j)IS5RE0x90Uv1&d=B(jUWG-?`C~3Zb`sQ|(6C0uBninA5V>qF zIWivRl>crF7TjxV{jg-v5u#P+r8c8G=c1e61OaOTeXr23IA#nQ-!7;!x&4~76HWx} zCMb$^Z{LneOM@cV765hNS)s9VrqlZij4R|qeJWXFvh>)Yy{CW`WnItk3J6sEt>Z!U zpkxq%0!OB0cK62$Nd}pdHwcu+lg?WLTUP$0)?;(_m9baHeL+lM;NQKyjeDXx(&c}# z(#&yP1@MTTb5(Byv?UxfM)SD!Ip0>PD83N4Jif}~yX;lrHM3$bpkWf<(_C!PU;=37o z8>`2zI!7I+<2Vn6pB0rCnQ$->}fu} z5Bx1lyAzv2QAgRLO^M6vUdC-oK@Y>#uzCmyba812o+RdC@($h{Mpov_E<9DZ&{;ya z3JN+wB6sRT(35nOyH_zuJ~85P^FJXhD-Nr?EwF+HEoN-P@cBzHp8xIO%f`M4{(E zPXmJZp^V9}j}0aY0)%b!AF<-j> zixL`c<{q*U=J*ogK48|Cs30qkf7+Wp2?1)PVLv=#49PYd34I|F2||v;s#bsF)Cw#L zqpv`O%t%K;x1VR&U_=BOz9l(yb&~isig701noI$BnrexI(0_ayF2!2}4V)kS% z3Lie_ecYDz*O@VSxn=@0GZBo?rNB8xNr2`AngMI1Fi1-j z4`pe}CJsURNt}nrje$l1CPP6j(rz5=Yk57Ot=QAJke2hcJJ|CJ1`VE2hlH#9|8r=C?OD5(F2aE?g^nH<@t(HbBRl9H0D*Q;!R7X+Gwrb-bH+i-wugZ{^+fOag~?pE%u z&`ej>bbO^M!VB9cS*q{%J9)|n`kA2!4}I`0kcSo+*RD*e4h#*Qzi?sqr#l!Xm()P* z{9_96pO}2)`15PurBv)gRY0}$g61xW4o9nn`yl5)pn&7lNR^69Pp^lH94J6)a&oY$ zm-X7_m(157Dvy7f8f4@PI9IbXbr#{MzQOSMPxyPOxsSU-(2V4AVK*d?kb?5 zj}lnV#dJU8Y^}4XA5N9!q~bC7cYVJc2Xj-^t7e!|i+7cMLwmO$}sm*L@S zquJij!8Cj+2f)H~n@)QAIj`&{lf}xQZDFozgCKQ^_g$S*Gy9ioL%EOCTe&$n6qba0 zW`U1_n~Nl>z0*u*x$0!@;Zbp<33MIQeaGgg;Ben-5YXB$YrUio($@?8`U7*hyV&ju z5@QABAfl{q&_D|< zGeF~*5b(!Fg4mZrteM`l&pQFzbSg3F!NJ4Rv18}r;^MIWQxW?q&}WL|s)ev}y6Xaz zpRj%Hpc4Rb$S>%#z-p;b7jB|qFoPIo$%U3>$VVr(cE%hQL5x^d=H=}TLOM@K>B~Nr zi$doApU&RMNMEoT=!T~y4TMJO9*YcUNB>XnE&jje;j91JiM7h_-M#B#+*Mu%|#X*Z!l0L>)@ zA3jKdm4OKX(3F01dy?(n%N(1bJmqX1U2aJL!S>3y+<#Q`ujo2)dQ_@-1OIgCK3PW1H^1Ih!2N8tD-=r9Zg zh98My5Pp6qpvU-CchJ>;VIJGf3O&YivRtu5&CrZoH3O*4^?FLDSU_VB)Uq9Z89ZK} zs;_UnzpK-$^a?M%Ta8{}(CoYNrw zpJ_PHnWd2`?YRX!_e@=ysFhZ?H5BXpJIsrpjE#@;#T4zEW7}L$d!k*)sI}f<(W+Hn zma#8dQLz~yCCm*Z8w$iZd3j+WA&xhe2>@GRn}889_Ki%@mf_6T#03Q%2S3~^EiDCR zc(mTn&&Q|cf4it-G}L+&R!Bf#B2Xs+8&Uvg2f0Pqix+cU25K4_JKIWsvBGh<H3fgtnSTgr?`lkpy^eYJY=ze6y7o>~j`!6@bw6N@|8Zw+Sz^+BD- z<{L&?*i2>(=^e{pGHsR4?jO~FQKv;%!fPbIBioo6XHfEswWtskD2c!lM zKm857V0?*(rxN<{K}!a_?iBREzW^L z(BqXNDa64s2jpniE9_VL!Uii-uzLk2680eh`rYj3ND-X%7q*`uM#4@k3{oyjutFMt z%hq7E^ZynwDQDIg<5j0DR7T{NdDw~~5|shD7&NEbKYCR0cupC5+@QWoL{29N9f42? z(MZ28156#Z*S(GPWF@!Y`thC_s{Pp+GSGEmC1J4l#?c(>30hs<)uUnv<|a2c*KhNM z2?AAja(pms?9DGF<<${=5i2kTHAlVkq6VscW2Onag$K!2w|mfk?e1fP)l_-8-kStD<$GYKuKo>*Rdt|82Q|B> zxOhB57&`YLjW|zB3k2-w^^CV~VdEZ3Izi}o9bP3tf~7D)G6-8&C@3gY&P+oc96TNT z!_UcyDfjaLmh3-n6B;{eX=!Mho;-${);?^9BNlW}1_raYIfuc@M8?Mr#|mI$m4Q00 zWfv(F@ow`02@RL+c!dx@{~Bxw6A>Ef37d7W`fSLfh;_Od7#QB?t6-bkPN!n#e*4Gr zpBGAC$Cqn)P$K7px-aM@>Q`^n|NZ8$Ub)C}uv=1AMvbb7O9G}$u>bkmg z$RCiwgHrS_q^q!52-%eyK{zo!J|4C!v4>qiK(7Fc-l=kY=7JvP-|S@3&}>ImK}E41 z*k>pay3+lv%?GasyO$h5@!%Nyu`DuGPV=3x#Q-^r^vJPHQ!v%;&Q6`<3?4EoC&vmN z4|{JccBg}<7G?-HymA0$26X%6WXYl5eiAg8`l$~tAHU(e=aQo*7VVj{mu*-ad^7W!N z7H<#%ksuvvHVKhgA3j)*6h25h33j9XZ$z>$VD{LA9dbm$i|zEoQkwERIU)>rdN5=z z3>7tK+)Fzs%gg(Dp?mofDBf|?z?C(i`44>UW8FR13?3p#u^kd*O*hELx#KAr+S4%OEBX<(|ESI o`Ag*z4i3(t0@eTDW*a9|iLxV}Pi%^<;9MLPB@M-osQb_UAM%Sv*8l(j literal 13846 zcmc(`by!qg+Xo6mI1C^|3n&aQgo2=?A~A$CA|WB&AP7iHcgFxyf`9@_Ns34#C7sd@ zD%~l0*5Lb|^L^)B=ihU@uIJKcuf5l-wf0)~eg9&IJ$)iW45Ni%VPO%=$x5kWVL|R; zVPR)OA>c}8Wau{di@;u1+Yt-vdJE=1>;#VMbl~DOCpo3Z*M33h@QG;b!`HrmOGu~3 zT25+q=1#6g4rW+N;_8ax5}XKiOEZL$k&~sSorAR_CqmBFgiBa!`Ube433I=sgPD<& zm7Og@-Rh+o7LUMPX*1)yJok9+A$WL%?(+!o@R!Iuuff7XV97~|tGlIbOxxM0X{HNq zOVT#>LMa}-X-$p#)|Nv?@fkNtjrjD#6F#}luS3`Om8vtt>dH^mGvDW*Smtb~cH9Ua z4u5gbt(IK!)?(tpWYCV2i+1qcFJaG(vuU0$%)zRow4aZ`vj$Q}5hx@j0rQeQ9N7G|klZ6y6^~|H04y zUZstAk@NiF0kCndT`dDdfEa~2a{n_!Wy_vIjc@?qW6<3O7 z#8C|Hq0+bU!idagQl49*7B`!J`bS1aZfAU?qG9~3TjgMGE`9Fc?mjVZ&*`bHqm%kN zgEX2!%yuS~!|Y=Bu{bK@w}&iG;+?ev7OG#RU%#GD&%B^>W%x)Hc*)01ZpM{(`oz<`RT=FzWs<;|J8nzol?RgM->4O!R0B5Bu$v{y+q%cr16$P5hR z#S@pqg+xOc!LQE#?R8~kW!3onykhxRala|cWj{mWkpXxk76?QP+9VMKi1c2$KZX4;*uOD${DvOun)_t=_62<= zHb)@{uv~+!GZ7`Z?N3>4CRCeyG6`4p~| zTgUynq)TTpOt)hL`qjOp<~s`X-#S$FwnqYrjfYJv6roc-oMpV9j$F6B2Ln%QHIAah zQOpzy_vM%+LVvjsZB0{!=iGZ`0mUU7UDoq1)cH8uwj;q*jOw#&6xvtQ2_Bls9 z9gz*TxI#Lnd$?o`_+;8wclf^8QjoW03(0uWG(BTja7_mGjL5I0_*+LG4f%B#BoJQh zn%Q7Mz81`Ro$hA7A8LW(P!Oy?3L5swabRG5yZ&V%orA$D{x#uyc@QY_iIKZJ4xS&_ zcHueSZqel}PnY2k*i>`SLBiCM(+5%FHcvEQ8(s_tM>Y#Dn48c0Uy%t+ClLCzFe@rs zWg-N?JKBm>Xg>W4ipkf?7~{N#D!~r)cSwQe=jusB__x#hB(GrYbD% zP_%qC%|Y4uQhvdawUznS6`^=X1w>|F4fe#Qef9gG*^)M>rq2H(>0=MO)39ILGcVK9 zIKJP-C39U^ncCL(cC8qphZ!r6$YMHX!X-2K5LWohA+sz0Dcqw>l~$!aTNQym=0Ud~ z8oTF1VaAdp3gFH!NShaPvcm70rv<=Sp(}eqs{+oL$4w{0z?N9Q7V2v?H^g2E?cPs6gk217rjP=rU#6KPOF!U&xl%Rd)Md$EUlE{atJifmhUjDC4RP>N}c{oal8Ut^0M zrRNDlpp%;|Q8;*|wNE)Im6y=cgae99fnx&ka9K_xzDz%VEq(UHxCG(BWp89Br2LnGyCi_!KY@gGd{bK|hE&P9Di((t#QNZ=$8YdGW|a zqE0}*;L`nOzt9pE9UVPcX(x8@Q?0n+;v|+?CfvaB{N!LM!{=h$BExLBy$poB;cmTu zy*0_v?x>+1#_zlbn*Cr;5fA^Nej^_f# z$F&8B?<$$zBj2vdr@0zdJU!@$)E1_i0>bFn>JEKXOEu$1a+APp_Rfh4>$TO*)}?Ca zHHyc#y~TyzrKhHP?6gv+rl#7>)Q%4h?*2)&E7C5P-VVFwYAzMJ>CEaV{Xfgii7R>Ns6tD$Wktv`_i(Yz`1)-R#aqb zYg=?|w>ed{*Uj6PCgyW7?K&&sx~a>R^vL_{TQ6O7Oib!vKUtu0UVz>V8N;4q1APog z&VNJ#hsWBRk`&GU+aZT$QCdohN<&(Dy32$5om1Tep`oF!B<^A>as_f4KJyiNP`<|%x@{p8lelHo)_T$H__vr?xIEu^5H+=w%jzx{qf+!Nn_-FNEm!@eEjdbEl&$$ zW8>lcXRE)qelYkH*3ac6>ATMdQByp&dhx=2&hOd{{=Islh8;}p#lOk8kEToa5exV3 zu-rcp!3nc5?N{y7pfc%FJb*+rS38_j!@!`yW#hT1hbnvGhihGQP|TxijIrM% z;TCR$ULBVGyjph;&ycYYIo%DfjzL#}No<%g3n)1H1dW^A`}QRfDbZZhI#ybGEEFyB zAndUxO3;>mFjp0RXEIHNgFq{WLSAGGi5e)YZupw|c^BuG%=K zK{`wnPl_(F&XA0o9GESan+kh`8+W_JsTjmSX^@5nN&A+|x$t_B;Ho{5ABca%`>z;p ztT=E@{Z2@z4JCJlA{XaxKrl1Aw{-{CJs%xfLkE||Z@!NULZVs!Yt8Encd-cv7|73K z32^;P?|BCPM2T}U^O)uZouzj*$_3+&Ck!Xcy^9TGg7Ehm}kNyh*&@ zG{sI`@AwV3WFhb~B`Q36fq9IkbN^(t)D};jX=;Pgl0`0ACfSjTCot#K4vYv#ke~4G zoTD692s^p!4MrNQwK_0?1YJdCqXSt>$aH)lDxYdo4^&E=!CVMTFHbUKf}zC-W4}L386AVuci{ru%K|9_}oe7>vq?eH`U~3Xh0Q5ME>T#fFF`!MkLk+4*zb zPr;%Yo4-?vIi=OEgybI_OGfc3k(ArE4#H&lioraBId`Y2AJsg>+4X6u4MKeoDkNyo1k~Bd$197r|;FSok;9c>{L7MhE)X2XyD(J#3azk-Lvd8 zjuKnE8_emw{E9P%S3fRK8J@G<-)+nu`g^!fF?#kU^#T!}R$L*)ss*cdr7=Nr83%z^ zcGKCcYl$tC`zbs%w{P!)gGe5{Re&aNn0CBXainEgz7N)cok&g`FUaN1+Gs+Enr+?x zDZNCrrol<<_l2+8DdtlXz#*rg{suMjng*(3VI}PsnW4)qzb{|fpW+{lgZgt_(&16y z@nifGP>r>iNWoR=~C5Sh83uW40&0O&zvY`oCVf9z@FQk?E}n+qy+zSsoa>nb1l;Ic<796^>$ z5d*$3ywcD54QxE2;&EtvvT=R!KWk8koQx@ZfMg-q`ClowtA6QX2O#HLhN|4$<=@~T z{ZZ8!9$DDyET=G-u|?b@>E`ZrWWC`uoV^dV5D_4uWQ9OeQG?2=tq&|}51uENc83WX zi3S-(d8y?DZdHMzrK7{(<^(&YsRx?ZKAp6IS?yj zQ=etx}g^pmCerrr+aj%0u{WF=OHo-q(W z^v9ogqaq{w$LIBGT=)eAxjnJ1b%GJpb~XOX}$8XkSu;0G@Dw#^Aqp2M=1} zJ%!+hJ>x%&^>`AWOWv72K0f~7(>G}>*W)e>mgFZrQ`Id1RhT7dwC8t>%DTB}KxqyS z&k1)O33KkyvItZU{|eCl>Cx<#fmu%Du%$12aB51C&Svl{1DNsM3CZOaz0)vcNCAZn zH_e}aVLal9C)BxP%qj2-yE_^7nua|tz?K9jBHuN1)*;lg9tNuW@yDdH2F-FHRzjDT z4?Ij+>^Ah~An(PX1Ke7K_=5mj-#IqeziHh}*NlT%*%8TQV=|HJjoYlH&$PvFgkz8l zr)K$DLg{nFd8@%$>v*{Z$8n5?$PZeu0F+1Y-Dj*p#wk}tBj~U`=G%m) z`uzetRkLM!4bsYuR4^>EJi41&f-Ut_wx)1ukZ9kh=W5ZhL*GQ(+HYSKWiCIj>c_%Z zX1WST_sa8 z?t@*y5DGzROCoNBhv(PXuh=BLO`G}ME-H$sb)8=J_;-PyKZ+kDu7{c^)|5Lu$*~Ew zcml7vO^;AbtKhIhhBH$)7glcabRY+$1k!u8d7?slaKh*#B8ELEL93cw@?%ySuD9*i zk%jg+>*r%aXs(Z+?6)lLQ{WQ$De?sT9ts^3Mt=z7l*R#|=N^owLklE#%+-fz`x_v! zLE1i~NYx7+k>3H>m$TMZy}RDe>AuLpx8hi5jtBn!zVjF;Fchqquf?8NwwhiYv`!}r z^8b(;rav5>JlcJ4=G1J`(wB%Ue!|dQ9xykr(Q*k^TMC`>Gw!Ypt0h(lJw@gDLvU81 z$?`qOw7cp|?mTF(Ht9D?IJeV#|I?!6@Mw8l;sLd%9AA_TzrY6@TG=wyMt3I@qks7=yjrz;aIN$GF^NH1a72 z6XcivAqP;jhWp{`1hjNZx?kXV57>7<^}kIjWOzjb1k^77{#=S@YNNuDmed2E>2Aayw4Z&N^eEpB!hHlY)<4KBgt5!yjzj zfAg!!a?Y9^TJo6pHcxV?5kPWPPdS75RL8l{0Kd8`DpQJ!`#y9hvNpYEQjm4ilGf;B zQSt_aKyV7MdW|?WB1QfmRsJ-(=z6uTQ_2F4BM{Cx2ZHll2mmii%p=6}(RC2HUdj?* zOr9zlV~j^j3)xV~%F`1bgO@TFRl$4vZ97wx(-;RDf!w6BbX@HW0(|lP z+`jxd;rQjfDEnYnJh&_tf~aF7voFPL8ZPpF?8aa&4`7nva{XHbU)?22DFEY9bcG+$ z(h1@SY+u8xg3$3BX_~<8sSWUu3L_c|b zx%U-um6X0`u@E5@5gQW~YXE~gIy%w`+UoA(jTRgDT>M?i@H!knt&=?O&MqwE{p?o( zURwRCM<}X(;?<|4UyRL!60Rfj_v~;8$Yn!F80x)F4?+Buk&&UkSX*CT2iSQAAfk)2 z*GXN&6BE^*e|Lkpbwqh@bKqG!AwW2%8I;5&+pfab9d{FQZ4i$u#RJroLy>QXkO}B9 zMtB#>_^UI4Bf{mQlaPp@;L$<^w}7DFZ0+lEfC762XLZZXqyCryZu#=yBroKq!R9~s zOSMtd+uq*(yDMphVPaw;{F2}b_!6x!{ud{2&q^+D24C*96(1GHhgl^>K1UCcoXLGt z@MZRIsW#;->)Pyn_oz>JuNz?ZS+ApM$EDui4poakV%BQCJw0p9UlvHWHb5|I+CdLy zU{3c|l*6;Y|58Uo9K_v)6#z-p9-CN86)H$4lg8EG)%ki;#Qn|1YrrTdiyWx)RJCIt zfbwn1r`D(8feZtf)zGl!$@@YlkOw(RL%vj0+^xRoW2=tiL))Kic}*%-n_7bPQEw<7 z@TE#sE>vh^V$QCdabFwOGHy^T6w5Kgq!R^?Xwhn546_^IgxnUoPzrxuT8v z2taAjxxomqM6_Xn1!CuMSaESCBKCc^IH^XA6msUxG)T}t#WF-ZT+GeQk2a^3g?C!U z#}aUgE7* zURK4@e|ifM7{#r}DsSJurFWb23%Wcxm`S!Rwom1^TI_n)0~8E{+aglmn7ZV@d;A(K zcWih)HEP+$vgd!+4yxuGLnE|g3!iQuzIi9@<#i4y6zUDRI~^Of$K&cfZ(FD^)!)k1 zd{8-$t|xM~H!f3aiSWeaK=LT!y8O(}Kw{ETE}nJtUKQt^`8(vs5sqTH+LA0J*a3#;7X=SLQY(vCQ99=TYydU z_a?E0K6?+MD=2`Lj|v5sg5Mu-t;_Joeg-`ct{G6@YDEr@f{ZhbVzOT4-7jGn7Iq=Y z2I@oKBTORF6BaRBRcl-ER=0V1FJSuWp`*EZLQEU=yJFr0o&NLOu?rJ?Tr%*AL1mNS z3f@;J2hW?8gJRy(n!uX6jZ5J~Mykj36u7vQN~SoXnvF|5r*s1;FAI@0 z*TH*Xoaah&J|_l`vr{Mp)znt})dz*ceOaEHptiiJS^|<~6G5x0cteQj%QF0BDGBz( z{GQ5k0^C6n@Df?`!rvnhaP8YtK|k! z^VIKF`8YqgtO22GmYo+43?h-qklH=7QJ3r6$5Qn!c}f5VS+S1mlB-{xLV>CJ6;e!` zio#q+Ex7~Q>cj`1;#bPufcWk6cWgAiM}WncGq}i1?GjArVD83KK$}GUJ z^T;tk@{s#zvUN8Na3<)51jwwF`BgJ!u&^i1yY;da=5@Z<-g&H?M)>!u$x`c`q%mKwNw|K7K+O8FFMBKXtu% z*1!p9!$4Qw7%yM?A$GCT-Q8X6eNZ5FJ|vc4Ha=!Yx?P1ku@ebO1KNEwtYzq-hLw7` zzoCd+$YaP#QxGA8&)E*<=JSo&i;b0`Pnw^fA9NX93~p~R_49tiWUEwqRVsHXoC4>p z=Tw2_s_X*6)-ugZetZufj)SrRNbM4#Lo54k!c}QIVpe`sdn*5)5dxK?#+o!g7gXd2 zsKvxtDa+ewRh2P+NY3|`mzOK7N7FqvtAe-zHh$=`euL3;v`7!kgwhj;l8^g7<@cEJ z^6)tP-8DN20q}P4k{Kk37bBALMuxOIJ{`IBLOPb~AM847KUo1Ft7RG})zjCPA>_Pz zP3-u4^sPtf-X~V?GyyHHd3g85nQ7)74-A-o(Jz_kWcSf_OF&X|XxpcQLah%^(C)2x ziGume9q-H2*)6b;12POE&Z|EG`%7IvS23#Zu~9Kf^jH6TMhu>hsCm0iLau*X7RZ;0 zBEP&(WG;&Lvu2ZbdeaPeT6yCCHYyk0^gMEGo~=rTCq+J%mi_DL-Ip#Bh<2TMy;QZ7 zuJhFJ=1667vG?)E9&+ z5Gr~%LF&njOORj}7+E`-lVhQL%G<%JNe=120;H79fmHCiw^}L~LHI|NZ<7&x`C8v5 ztuua{Frp&?(=?ZhNwm3EfjUF^6#E`FaX|4l0cpgikCpQe0CcI6v@~6;DS;>+#Vh(O zO*%(H+=kG~6#tPah8hOBBP&ar&^5^csDgofJTbp9Lqoc^S+WbXRWsJ2#MkkyOa-hh zz|DsHLM@oJD5cC+AT4X$sqvpZ;cm88hs2;)Ck|Ll_o>(5qRq0Q!2snykV9 z8GGohe#cdND#@Py*xXhw4h-SlmWvVm_D7j|^9oA!8-5tmX_Lx+%(RGno|mOgfLB^# z$<#GDbZFzRuK`f?Lr4ebej!EL{d@^=PJreg2lL1>Yb*!czZ(zcOFqCWtzGHQ%pTeb z*ge3)1RpU)X{qvdK-3mM>pVd|;Cox8uE=D0+iPpVWADrk%b3vJl$*QH7vm#Tp2E8t zS?!8&J&Ozrw)@(o5GfJ#&kUnh^dvJ8BPbvLv0pt2`VBG~yAlSvP~^}+3|gxjFybE~ zt~eqAp6xbB1Q^HAfWCjLCnb!j8enmq=;LfIRs#3ITaY}el4QX8hXSbqsO?%p3sicF zWcxTE%t|jC*Jm>5bo=^;hCaDwv=ZvLAX-f0r_Ovtwbyz!W{giEB?ZWP*0tlKVH1Ov zR6i7A7!==R`z8@`PvNEgUhK(*842tcQ=9m>s-J^uO6_-v*+bz#{VkqtuBLoSUtQzp z%+cwK%I9~V2=8}Qqa(zdHvp!N6OjkyPac3LM{t0gO9T$bz(ApvW6ehi@dp5~|6d9~ zR5Xm2B^qVyJ3|%z`VJ+msoau@qw1!X2$}lTCRAbFgv;8@eFZdqpbieWoQ5K?mPV8^ zF5ur#dykk3|MbZpii`!6>qE`szBH_iL%3{rs7GxGnDlkxNN+zrvRl&=h?ad&GSRr} zETa|(uQFcKd*waiIKtGmKpEx7M$_RrjA*T<@rR(S2^le|tURXo$$j;4#c1TS7A+)< z<*Iy`!N>p?LWF4D-bcNx|61-}wG?%O3fo)jzY>6>n5+cizRT8aB7d9CLTrjahRfpL zlVbyhG!lh)Oz5$!RG#~+Pv0Z3g5#%p$MI(@HsG@B1CFo~`wtT0SnC9SEqLxv{xOx< zC5*Ua)PaxQjM}h6eTjkC5A-4JOv%^QSa?RZe*q%?1yl>0>~v=wdFRu^4PJ}hsc)}L zdfxKSp3WSNd>*0?&QN46*00O=9v>Je^*%qD_*#0$NfE^$tk$^(GML3*dR4AeYAKD~ zR9ZF+`EQI1DAlQS5f9s$S{f)WNU;Xz`=7)_yiUF#wfB%(xSebABQXoNzi{_R?QHduDqytLLrF(q57}NLeQKeCHu&3x{ z3%T;yZc@WpLBmPG!l*7#WC70iIUKjp<}Y(!jaNvl6~suVpu>}tj-Ax5&niBtx;#Rr zIZqqj9-+ugh^-tP$|@?Hn}dl1;h%<9cHA7Q>}G{{+JA(2(S%u#k{D;31aM zJ&KO;R-D{{Kd+VAz{b|L{`H=@fDe$B?p^-kGxN=G5yyDHgq8E}J!5>5p8wlDck*dFw8H z2FkILtxeF+1kaNk?-&dqJrFU?GWoM$@v!L?$v`7ZmN=oqPWjX#34fWb0>K}=9gr6> z={ZL9WI0dm6Y!@MTrM<+kZes=sqG~d*Bwq+7uT6T$06oDOCdY%pzJZ=vJr+cNiEXw zWQUyfwX5t7o_?$V=8k$(DkknaZmGrA8;rmA{)%`U!X-e$e+O2~cD&5&Ep_d|h)!|+ zN&d<2{r&yj-(A)dQj4-&7Q!MqK2HF;#Jq$xz35Dq#2p*w4oj%hR^Sc4{RmJ507ad< z;cRz*--$K8!;~jJK0XkQbM1PX@as5unft-2;Edbi{>qR6fb~Iy)PNcp9UgA29;S?& ziUwAIhzzBbT70l)@DI`UNuv-~_Q}<_fl!P%G?7|#jBNWD3>*QVY+MI3K2P29xjemg z{pJIY!*y^C7#B0#7Q#wPOYI+=?RIe&1BC-H3EvITdL9MCYe!!)WP@w!jyy2qCt7E8 zqEX)OnRTf#RUeSjaCit29sNF~(-Uv*FT_`yUl5lwHk*CBL}XpvL7hzq@MVQoi>B<`A$P z!aII{=^)Q9bn1Xh099L9gryTgR;q>2mMflRUV>d&!vYykZWsu^mwx~}Hs85oS*uB9 z(^T2=v;+gG*`Yev844P^xeX{F!KHD8R_unO764pq8Yu%M0Z^UA`>FvW$^Ojr-q0*Y z;_M7SEsTP_vw&lDpCa%xfUgO{Dj+S!P2QejMF9KPvOLd~lwuS;6OZILzHP6h0lOB$ zWAt7lh8;AQyug@OWn2ZX$V&*|LrVkn^gA{Tr_p5?ZyF8orUgC}A`HxcR4%g#lpgZr z!ew=v^(`=$J2sZL#&0Sw-BbVlRQR3s)@g2o1@Bt0I@GU)Uud~4p;$uP&G(k;6j1Jg z<{SP%TLxp!tCHH#0r|`gzFp=2nckF4^U5g~WB+Ik;4!z5R678Vo&fIwrb;7YTPBg{ z&tV2WDA#X)rGXz7mkNkL%1a-z#^=2zwFI-D1GnD%A387`2EKT}=58t)%U&7J2wd5l zG43h=O0;jEv3cY9;Ni`OU)l9WyqUrjjU_Z-{}^~m_Z8V76d9^YN-^c%(|SAl8?(b{t9<`e0@ z@=HDd_|ll!?Jlr5;fN-oNM)*M%+I~?G=9{0j!d;TuZlr z_YR|Z&1)3TO4<*;>yRjYQ~2v{Nrwl>ELb0UkBo=2p|GZhrg5d~Xdp-7VzG*|(zLSv z=b0ykZvlA}=&P8Y4t!_8Xx*s(f^|N990ss70i%E%=mmmRKET#3&vlI_j}zFrIySzv z-JfBRKwzWp0%hv8D@)mb#1$;8b$@#2MG=SFj)srczS>8nzkN~axGL{QN{03Gx=6sV z$1gH^L>asG?J2NP*#8?=C<$HPGGb#_V*R7cU5B}xSuUPhX&u0;1o_cw3+)oE*? z1quc}?|@X|KhfpARz3j4|L$6Xb?qIWpYj7Y#uZN915{A+Vh~!I76=4}kr+2h`7_o5 zKH#5==2K-vw;(uz+`FFw9fq^bHYNKbDPXSf{E%4Mw+-vEf!#!oFaAT;NJdQrYnf~o zF#O>HvLG#9Q0uCWeKsI+eT1IvG5NTk6qVH%aQLw7TP7S`0S4IvA_}NMF@~zed=8 zU&sLTMlc|02~r?x zMS-)mhKm9kJCFM!&%R$u0N*!CBwJt+$qOS>USg6=860ZQR**(e5oAYDb9;lQO10LP z2eJUMd{%sUQanFDPg^;U`B#sdj&_Hb{)IcH2xwVlizLSG5J0|az|#%JScc9WJNHOiaL829(Qd+1v^R*{0HG5>x(+L?%y>Rl~U z;+4`L^d9S_KPVpm?NIjS5f-im@&j=3{TJ;gzwWtr)+5H@83A9JeR7cjyn_EH#>d@Y zjQIn5KbBGZ<)kyN*wmw=79qB~K4o{Y@oRA7=e^uAHB;K8Ng!pOMjBz097x57qV&O`p&`jwMX7JO{N6;a5Djpe(%enZy8#H4M;3&XlQyfV5&H0c6v_RA9_y#XOzkWtHMeVkQpIqw9Ri9zyN2_xDqB_m zZ(mqs&7>s{nXAp}F8ll9yN8b3*}CwDJ^+kI^z}Of|I>aUoi(!;uPj;x?0RA3Y(hdp zwzKu;Kh>1$E>70K(%oM@@3Ab;v*U6SN8yOHtP2X(&`RYhwCVdf9dFMA+b2fBaB}*Y zdxSBh{x2)%*~w^wz-mv}!SGNGoY~n(fz*>f64bbS{gU0@j^zd7fz_sk!V)K-N*-3m1v(q}Qlfxn_V@qz zbR%UaDnA75_3;t#{zz;`-1E4-MfI`d7GT9Rc=nqh)j?NUuYzsD{%z;uV1MfL3fvc z;}aYl3^c^3n3#t1!^y3>BYg`Cwl(R}K+Mf(<6P0POzCrI(72!a%)hAv%DARr=510o)1>|Z=cHn|pg6Vn3shl! zG|haBJRE%duY1`;daA~{s%pX*V<&rz-gO@*Qx7i}Z($6<-Bwi5Y@7qMKTBz^?qz@7 zhv?ysF($g%Lz1#0TJ|?YB*i7gF_Mz<5|Z*VvJT7{Z4iWk2pX!!0qKk5)~>8W<3}rH zJ2jV%t(HWESFQHA$g1Yv6f&M#M=_AbQ|mIx|^-l*%_^*qGHXowj=z}p7L&t)Z+V; zQOs2Cp`N4N{<89O4kB{+fnFf~)~#DZC6@E^^ZgTketz<|A6G1LV$s~G3IUcrC!tuo zM>z90UO)eip!Z+?I^N&!z51i`p~~Uw%F2QK7;O`CR20<8z0 zfN4HV%boE^YEpnSN9;O8g@jy|zcz?9?R$Zxba0s7-Ix~=5{j#R-7~Ycb6e-OMCSn2 zDUZ!#J?n0PiK-lY#aDCFnm6hx9+FWz<^A?p(y?596^lkU3p0tzC*obY? zV)gnZB_)^M%y9LZ;NP_|qT(1oSn6V6)i)kp#Gc$yDiJE<=`|5}DTDI2K2igZ!=Qyx zRq7r7R1d4w4jpH~U+x*{h}#=S7=Va+zk1o0g!Q|XVV4O3T@ zWUtB5TsTcawo2a(3Wq(MJr8j_#GwSyoUE2%flT*;OeL(ShmVu6u@ha-jO5LE<*M0! zMwh@tSHPG#JY$#8Fh5NU?bO!ms{`UjzAx$uqmw9?1!=GX*)phyZTHN2q2ZGxr2T1z zkPV%yBrrir1P;}^3gpM<!rbb_+4&-9z+C{bjnO*aqi^j58AG6rR& z4JFL-sABWL#ygG=ySNkEIN0Q7tKtC>kf?W`*d+%_1X(O;psV7MNZ5J=!?=u)COaH= z7KtiqQ=@`T-00AMb-T2S$bb128P zXXo>0C&38xU3*_BPyGol@Nj2FWpAOPudna2!1{EWhpeous71BwI`xCo7rj=#w}yo& zteuF6h}dMp{=Z&vxZVA=9t(5xuK`nW2?+@nHSTW1uO^FYz6Nd#nresS6&B7vaeR7f zf2CdXB$4l5-3W1-jNmrhYZN#boKs~(4);OV-tfOt^B9?#ts8G&6cQ?Y^Jb^tK;;Y< z7n@POi7}B3mapIJ3bjq(z${Pejk5Ig^zLqjl{Y?feP+V4yNGx^HXgq)T=sTm&9Wg- zMoet^({uGpNy4YRGcF4lTU(bB&2Qa$(=$_%w>?4=p*Hg|qu-j9ot^*4GK#9#zfj8W z>bM;vyqOA&erN52T=s;6gTpygRPT}3-sYlSnyieRT*!K_ww|8eO2F--!vjH4fVs9h z&!znNWPfbEKDRe#$HNm6p5n9c6m`T2!zekgli7sL#KpzQx4%qGEPIV_XxG1bP* zs~Q`X58NCbXHrZ)wm&%YrN+a0)h#6CsQ%WPut=}Dq#RyawsJR4Hfa!+A}9kV{(S$K zo?UdTA;{mrpr`W@zslkER9~N=Uca-mGZVLR5pnc;YYg-03!jFE1Ji%^ zOZJ)=T#{B!T+Z<6aF>*n>!{8?Q)PcF=XmH7L)-rZyfS(UH^0AYZpPW${~WDyQIMB+ zc5$KHvrS9b`}gmQEo!1mMm73mJAO@6?=&nGYrbI{qYwR%e;kmKs_jLDh$|K z+o-%pCgc%MojSEO=4}wo+?}By$Isth9>{P!j(JCEX}wX%B;1omIP|KaAQ>a#SBMY~ zau#-e1pul;WlfW@{CbT%RH2QDvU@0f1N^*)A!|6ty)$y{e}=rngQx?msWeSSt_Ag9 z>%}10Bq4DY64vln+yb^8SZN!u(wy~bA{j}43gU>tp@3&FU1yf3lpf$vgkBTB;`rAT zd)BgLBBVIE;(ci6oZ{Y@9&Lu0bwJIY>*Tw@f=$NmRxTNDJ(=M$F0-Y^c>z~p%DTWK z;frim1iyQ?KNaATX3sl>zT}1S&Vnv9TjvJ`KV{0Fje}AmaVYg=Hv#Dr6^l;oLg@(l zW?f_gNAECMO$ZHe9v$ur>9&=7NPN_C&zB^z#xVjQ>y-C^9I_*^_tb)j`LA3xWG z3V6v#r?@e4Q{(_TO73pZ1O?++AbnNLRlUb6@^^aV0YH1Qz&o9FgttErNs60MH|ro1 z1{2MGTl&|gwcEhVVsYh(jUgF7=o>fA{xr~oWYsZOb)r^kYx~E+JJ$sM^Ck`UQfJd! z;E13s7X0Vlp&^2@mG%}*r~op-_eTg<($aB=M1!60I8qb_ZQ#f8Yyjp(ZlPBejzeWM z*cj>b<;V4FH)XxDt79D>LNs88=R9NcTd%RpxAV(i9Ea-8l8ZdW$1M1^CIb6tLOqcQ zC(S-WkkMJP?u*Rx*xG1guohrlfAB^_t`ASx>J70hEmFK-wDCus2@>KPa-H0r`)-M$ zIR3(vFLaleQW|3bKkaasC-(=xLgIIj2~ohi|5TaQk2)a%U4W77lJ0qWNS8EUPTA+b z0eRBEJB7je7A(Bu-ASc~m{c)OvMByM@<(Rc#ehShofzad7C-u&2M-?X?gsXnIQhP) z<(uQmbtgNyetLfc!W^?WW@v3au{2(1kRi`k&2Xz$+eo(Kl|tG{MnHfvGtlq5y6S3c zQBm&>wkE`?QG{CUej>SL;b)N(grVI-_B~Y!av!ht{r)a$ZKj7_SpDfzuMgTT;Cl6A zJ{XQ}lQxH%D*)GD39uz+dykVYVx9K!>Z(^}kE7P9Hou2z&p*BKo>^yaZEcm>T}ov1 z3c6mMM?AW-y_Nce@kY^zG!4`_;><+c4GawIeqA&<&Rd~=<7>0;K?H&E#sxmZ6S%;I ze)ZG`-@kwV^~-s!#AACQzGtSNUe&Gv$StK`&Rf+_KId!Arz`G z%ahwlHJ<$j3_@X^Q1cn2p?p@^bI_3SsZy$(XM+ri9o&Kwnw0ny7)vSM6Th?Y;Y__~ zEfRVij!P~3jIVDIy>WEeDt=l&XcveZG`1`-4{HWieb9j@d&qE711KD+YiBlC%-4n{%ewdQgAmY%Sf?j*|Ol z8Hfy1$|3gpmz=PS5Zt#)o|wvdgv4Ed6U~9CRr#GR?U#r{;;4{)0~8qYSja&4<0;mp zSG?roZ_;bnYm#!Gh=n9E;CEuq>zJm+qpX+s%kas*E^Y>n0h<=BFvC(`iz z?%P+JOI&kT#*+s<8%+UwKOKkDX)R%X`(S44HCSJLX=)4$DN#rLbzf2M>{0l5V?>|-QNmAHj2rjk|1j~KUf>JEo<_tAM_PtwQ z0k~%-!ton$a6Ygvm^3kZ-J5k%y7>hH$y_MtFPfYvOB2>%G4xXd0w zxkL+goz=+>lw|~m>j;En1y=#~*aqQulNe)1VXwGI(n*in=PN@zMw;`_K=a4(wi$63 z4m@ryrosd9P?0t!ZV(-%;Mua}6#TGG#w%PGZX*FF3OkB!b1i<K&3<~$cPS}$$4r2=ptN*Iy12f6Y-TNP zhbS$J{gS$TS-@v$?Bapu&6_K;+*dzgP!C3Pfl5$N(RscO;El&<?DOZVAbD$|J@L@^{aGkZB5Q~_|s?E z7BeF-_T9CkTA@|9q^Y%?^{|cL?)6iBnAE)DTCu_4&ULsJ{u&tk@DNkzu>q!>)YR0sk<2cs)d4Ht5!6i5va(=# zDsppkU%q@wo7(v%^T!jrU05tl{#sIXz zGV%0w&|F{ckNN*W`u@s**raJJWT990M%Ddn|HbVt5~can(Rbsnz|7uWAxU4_v0`@= z)$LgJy;KD(PvkiM2pDcw8Hfry@(Y{aD{Z$FnY07euCn0$Yus)UrvCUpIYHkS9BXkIl@K}PBh#-QSOt__B&`S z>k?#R09x!@4SkOEx;iR;Z(`m#4n(NU0Tle~qq=hO;pCQN9o3&Qa19*42QnPa&552~ zXQB+v>fA*)%NPsRe@+H2ewrkG?9PE)*P_;1&^1#UETqLt&fD~B^&cK}ue@Cvqa9CS z$*HNzk17|PUd*c5fqnt3w4swUz$Z8+q+Ebe)}=p7<UI^@wJ5Ex3AbT_6RE;r4=LWMGQ<%DaR5jL3uIE47y8o=-M$VJhmoYE zT0;3bev5ljL-%;e4n@^P&n9n|zID7jtVBbZ`BcBD9H7L2z_w6o%4l+YW(zsde}5b| zxX;)G12?P_IWZqt_gz7epB|z*OYX~A9{)Cc(tn|pt{Hfl-Sm2Y#9krg=@XT~%K_B7 z-7f)Z1|FdZiQwXA9)pFF0BSai*SL?%2k&o#U0-I`nb6J^#s&CSi!+_!&+bMIr&apvAG7pa$!vNTXm`#I7;U!NBk zM&)46plQ2R49&^OE@HmERJUyI=TA$$^p4W3=7U zJ<5w;OVz3FTd`YE!^D&Hrpf33eAb5mkTwByIANeDacKMea(-i@Re$9_#Los6Tsq%f zF=26_W#Rup2O$Pn;l~Vx7fk}9qE8Rmi-~}nc6|31=yPX*Rx1e11UX4buOA)pFEWDz z0n>b_yz3Ngu(`g@5$rF;^*F=c8DPKK0}aW|5MBu1dQJ(5a*c<(^BD?2ru92qf1y&G zpWo5Z!EyBDUo6o%|NQ%LzshW$vAQaOAu|2$ZRG}=25u={Hfg-HveQlB4?sZ0e>_K$ zzHs5SeOFS@a>LeJW|jJxr$HKzpD*96*^R5VY3AM3HK9k}JurcBbe$uue^gk$24HMs z$a?wDXGq!&2p}LD{cM_`nEt)nd!piSiLeR?t?nZ|_#DtPfsUFc=b?YtWn`daVr0ad zlVa2C4dMy^f;vAv5*aRi3H{^asXH))7;ST}D++J;K>$m=R1oc@$v8$B#6aR_s?F{B zneTja2mUCFUIJM2_fKY&E!JILB_KyJweKt{PzoEoQv-zLhHeu!!XIZ5Ho~ABTv`a` zFb*0!bzf?i5{XJC-`xX(U^)%9zq5L|;I9iPTCkTv;g$^w>bQq14-=tYx0KmGzw2s_i+Px(E31 zFp^{^n8rAE6N`cn$MIJx`kTiAY`OM-L10dku%Q`TkAIGsL0UXyvRg6Y9vw)y?_horO=C}6u9+ci1bX1C|c`|o{ zG}#lBuK;_XBViK`%?!th5ekH&eJUGPIMC^aa@T)RQE&j16z}+kXSocTIZ-!*05QP- zikyIgXFGTr5a8#qFa!)(!nqg%z-60F8myo|12Wy05n@oqbgEgyOTJtC0d6XeBw^_R zdYB{@-rxuFVzM%F0Ed=F zguD?*>i%@C_n7Vw(0YL8c-YErEqt~7M_D_UMXk?V3Nui;s%mQZCz28q zf6UBSSY!)Q2;rQ&+sbfA@*7p~7>(E81lON{bR$6|gU438j(BbS8nhALZlUI`-& zsB|4EZ)s_%av5seTdEUlSnr$d@$vOlTI-ggq#p9memKEkr`hyci2TEY4E*(=MbKvWFo-?GVNnDuO2Kd8_s(t8QmYSLT?#(4pAz^kwO!+9r5hX? za!I{nWwo@nQzRHH`%grDLwy3>VO2srqCLrn&hgVz9e+uY(WtD9JXk1nvy5a)g-J&% zVaEY7#`9`F4c?veo&T(~JDZ&y;`5&b%t0VvdX=@|@4a*L-`vjB`HFFHH7j{{qy^y( z+B!P!&!Y2w&X+cQedFy2ghznsLg&we{D|T0?HQG$TNV};wzgBVAp>>r!NI|4Hs>%W zSEpMaLYg)+O10QaHNrt|qesiV-m>iP-$I3Z)+d_nfVRrW#N<9wuGwG7tg`<*ivKCc zQTx_#nJu`*OO1=m%b9W>PjmTF!CPe%t1pbq(Fvceuy$UQhT&Lc;By)NU*GsGj+R)~ z?e6W>{rQwyH64JICJ>?7MXzyia17Vq@?N!m8u;rapu#8k^%)o#KsPW=b#``kb+sQz zXwkC?=NA=$u%hsFU>t}Sr58gUd7N}6kCwwfhaggzWZ;BMagOD_+)JH9VvXD1>BZ_< zVp_{9DrUN$*qRX8R)WUgmK?>73Jzd8HzwLdYY;Xn&I}`Z{UFWe?d7$QtVMj3qY8{k z+?m=&r!5*vB z`W|yM@gl2G9F>8ErjFxTaLd>;lxUX)Lh+DUJ!QS7g116v&oks@y6c1az`aX=aX7+p zhB)=tavYTKc7;*_fHUK8OMYSsWqE%Ea60jC&w&u2jp-CcbB>xP3f0n83?!Wd^T}Ea zF=3RD2@62ZEGnN0$k1QL-b@jOzyQ`R*b;}~}uWYcjveF_AS zG>N8UXpjjMEkX7vPKP2j@RG5P%d|PzrlFr(uR(nlJq&{)VP(D;VE6`01Z{|jZ$JmE z2Un^yaXP>Y1wV`-DKvM|U~gr_jd}i!G(^2fLok6GEtEl({?UKtJCzu^EUSK0(c^w}N z&HaDB`EKG--+-v=v%W@3zi9QM@cjGSNaO_|L}!Fgmj07bi(k)Wv_pN92Ccx&>I0c$ zxC-WpffGb`y{IA=tdqkU?H1qELJ-wy%2@!HaBv$S(og7W@hm;@F)am^?H39>xEIlP z_+Eh^*n<}sN!WOhkRxPcwHBclJY;MiI%+8CoLuk!WT1#WdGXN9pOiZT6I0{X*P!w7aqzu7{UHtP zehpJ;1ju4C8t~?FY9yy?eJ5ORrgiO8*TJF;fU>}S_&XAWuPR47J%BCF0vwO64KOe; z5Mb3=u3K(8I`mQg%(8T*BK>-*b$aYeM#<+_+0wro_Htxkn~wvg<=FG|U~l3mczw1P zgwtHgx3@Eo_Gg|*If7vXSe;#6rI%x-{2gcK=3bVT8caPP!0a)7`x!j|fs%Qc~W%S(;ffsU_i)R&SZpF4wAR*;*pLotAx~9=JUj z$sN2sX(qgxHnBh5{X|O0v_x1?@YGS+Wr0Mk9(C^WOUp4vo4)R1-R^P1A|8kRxphtX z#L-!?duq=Cv7MV3rR1>Xo95QVa^rT#OW#Fic^|s$KXx1i>OiuDq~zIJs<-PK8x0$u zEr5bj@AdP2X~@BRR#uh-xA+gSJOKd8QU`S400IvKXDwu_ zZh}@s2Mf+Rc)3bOuKy}5y<%*PouGol?)+#k1FFUQG6Lo#JG;NH@4+N<$n5<5UYGTu z*Z%g(a>&tMRtzeN3ij-D8p8-Nl_D^NQ!@h}=;+{3V%-$n^Hix5Cgcc?H{`b}lX8gW zXX8QtwE#t+DYIL~u!7O)%1kgYXuuvM)}hc}uB$c+u|7UNw^uv)^OReG?DF3-myTZ> z@;u%bjDpXXFONJf>FBJktvTM(iHZtuCJkL~SZpNI9NC|c5-&*N*AR8uh zrO2%D_6|5!@S(2D`e=9PXIF9vxHWKm1r(ZeE?o-QtjK)guYf2tZwfvD0fpm&OmPu) zXkWTaWF^>cKu%EsiWo>sO^@d`G>k9$QHO&UFx``BZD=SNI7UbmEJSm0fjPXcT)E=y zy#|6Ic|}FVJs0z9%uwz{7p6H9HP*EN0ZHPZt))ThnVA`n;aAU#i$yj>9M;lO{{l}pa*+&V zAxii=znu2(nr=>M8F}2?U7rIcNO|ddUnT(knfd+u)ytZ+yv~C2!op)^ zw(Wprxs*0sF*AF8duMeyc&n~y|ECzRf(**A{8x1YH=xVOQ(UoC-5nixkdMjIjJd0e z(Q|lT;6BlK=HI+v;LoPZ0@6q*Yl=D?!jo|ShhLLN2<7MBZoA*0aM34!wC~T-6V|6blp;ubd3y*3>1uvtxPPe42)#$Pg-qUUTFXT DUOf&= delta 47 zcmZ3Gv><7MBL}YtgBGX#uFn%a-6RZ+b=^{vbd3y*3=|BFtPBjSOpHG4@iW`FywU&w DS|JY8 diff --git a/_build/images/bvps/shooting-method_3_1.png b/_build/images/bvps/shooting-method_3_1.png index 92ecdd9d90760812e08a44265b9d599f0da72822..affd82e0d043a757f124401c0ce2ede0687577a1 100644 GIT binary patch delta 47 zcmdn(vfE{XBZoA*zRdn^rre31ZW2ajx^AgSx<&>@1`0;TRwm|FM&|4c{)roxPf-K_ DPJInp delta 47 zcmdn(vfE{XBL|O|ti`@dB5Njkx=9!s>AIyR=^7ar87LT\n", + "
\n", + " \"mass-spring\n", + "
Figure: System with two masses connected by springs
\n", + "
\n", + "\n", + "First, we need to write the equations of motion, based on doing a free-body diagram on each mass:\n", + "\\begin{align}\n", + "m_1 \\frac{d^2 x_1}{dt^2} &= -k x_1 + k(x_2 - x_1) \\\\\n", + "m_2 \\frac{d^2 x_2}{dt^2} &= -k (x_2 - x_1) - k x_2\n", + "\\end{align}\n", + "We can condense these equations a bit:\n", + "\\begin{align}\n", + "x_1^{\\prime\\prime} - \\frac{k}{m_1} \\left( -2 x_1 + x_2 \\right) &= 0 \\\\\n", + "x_2^{\\prime\\prime} - \\frac{k}{m_2} \\left( x_1 - 2 x_2 \\right) &= 0\n", + "\\end{align}\n", + "\n", + "To proceed, we can assume that the masses will move in a sinusoidal fashion, with a shared frequency but separate amplitude:\n", + "\\begin{align}\n", + "x_i &= A_i \\sin (\\omega t) \\\\\n", + "x_i^{\\prime\\prime} &= -A_i \\omega^2 \\sin (\\omega t)\n", + "\\end{align}\n", + "We can plug these into the ODEs:\n", + "\\begin{align}\n", + "\\sin (\\omega t) \\left[ \\left( \\frac{2k}{m_1} - \\omega^2 \\right) A_1 - \\frac{k}{m_1} A_2 \\right] &= 0 \\\\\n", + "\\sin (\\omega t) \\left[ -\\frac{k}{m_2} A_1 + \\left( \\frac{2k}{m_2} - \\omega^2 \\right) A_2 \\right] &= 0\n", + "\\end{align}\n", + "or\n", + "\\begin{align}\n", + "\\left( \\frac{2k}{m_1} - \\omega^2 \\right) A_1 - \\frac{k}{m_1} A_2 &= 0 \\\\\n", + "-\\frac{k}{m_2} A_1 + \\left( \\frac{2k}{m_2} - \\omega^2 \\right) A_2 &= 0\n", + "\\end{align}\n", + "Let's put some numbers in, and try to solve for the eigenvalues: $\\omega^2$.\n", + "Let $m_1 = m_2 = 40 $ kg and $k = 200$ N/m.\n", + "\n", + "Now, the equations become\n", + "\\begin{align}\n", + "\\left( 10 - \\omega^2 \\right) A_1 - 5 A_2 &= 0 \\\\\n", + "-5 A_1 + \\left( 10 - \\omega^2 \\right) A_2 &= 0\n", + "\\end{align}\n", + "or $A \\mathbf{y} = \\mathbf{0}$, which we can represent as\n", + "\\begin{equation}\n", + "\\begin{bmatrix} 10-\\omega^2 & -5 \\\\ -5 & 10-\\omega^2 \\end{bmatrix}\n", + "\\begin{bmatrix} A_1 \\\\ A_2 \\end{bmatrix} = \n", + "\\begin{bmatrix} 0 \\\\ 0 \\end{bmatrix}\n", + "\\end{equation}\n", + "Here, $\\omega^2$ are the eigenvalues, and we can find them with $\\det(A) = 0$:\n", + "\\begin{align}\n", + "\\det(B) &= 0 \\\\\n", + "\\det (B^* - \\omega^2 I) &= 0\n", + "\\end{align}" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "omega_1 = 2.24 rad/s\n", + "omega_2 = 3.87 rad/s\n" + ] + } + ], + "source": [ + "clear all; clc\n", + "\n", + "Bstar = [10 -5; -5 10];\n", + "omega_squared = eig(Bstar);\n", + "omega = sqrt(omega_squared);\n", + "\n", + "fprintf('omega_1 = %5.2f rad/s\\n', omega(1));\n", + "fprintf('omega_2 = %5.2f rad/s\\n', omega(2));" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We find there are two modes of oscillation, each associated with a different natural frequency. Unfortunately, we cannot calculate independent and unique values for the amplitudes, but if we insert the values of $\\omega$ into the above equations, we can find relations connecting the amplitudes:\n", + "\\begin{align}\n", + "\\omega_1: \\quad A_1 &= A_2 \\\\\n", + "\\omega_2: \\quad A_1 &= -A_2\n", + "\\end{align}\n", + "\n", + "So, for the first mode, we have the two masses moving in sync with the same amplitude. In the second mode, they move with opposite (but equal) amplitude. With the two different frequencies, they also have two different periods:" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGkCAIAAACgjIjwAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAAB3RJTUUH5AIbBgE19/z5GgAAACR0RVh0U29mdHdhcmUATUFUTEFCLCBUaGUgTWF0aFdvcmtzLCBJbmMuPFjdGAAAACJ0RVh0Q3JlYXRpb24gVGltZQAyNi1GZWItMjAyMCAyMjowMTo1Mzmw7xcAACAASURBVHic7d17bFt3/f/xT0u3naybyDEMaljXY1wGrQRipWZjoG9tLokQaOMyWCb9WOIhNFqEuAkx2A9cCw00CQQClErckkggLDG0L1eRaCguiMIPl1RDWsJgrk9HN7cd2Cm7xFtp/fvj03ruaZLa8Tnn8/n4PB9/dVnnfPbOOXmdz/WsazabAgAA1darbgAAAEIQSAAATRBIAAAtEEhhe+655265wO9+97vHHnvslltuOXHiRCcfcvz48f/85z8BtfDw4cO33HLLyZMnA/p8YBVPPPHEpz/96de97nWveMUr3v72t//iF78I87sHevFzZ10UgRS206dP//SnPz158mSizcaNG5999tlDhw6dOnWqkw+5+eabv/a1rwXUwsXFxZ/+9KeNRiOgzwdWcvr06be//e3333//HXfc8fGPf/zUqVM33XTTz3/+89AaEOjFz511URtUNyCibrvttjvuuKP9K81m88EHH9y4cePp06cbjcbGjRuXlpYWFxfj8fjhw4effvrpRCJxxRVXCCGeeeaZ06dPP/fcc88888zll1/e+oQzZ84sLS1t3Ljx3//+d71e37p1qxDi5MmTjz766NatWwcGBlp/7R//+Mfg4OBLX/rS9gacOnXq4YcffslLXuJp6unTp//+979v3rxZfncgOA8++OCDDz44OzubTqeFELt37966desPfvCDm266Sf6FZa9G+cWNGzdec801rS9eeJ23bpBarfbYY4+96lWvuvTSS+W/Wuni9/yH3FmBayJczzzzjBDi+9//vufrf/vb34QQhw8ffuCBBy6//PJvf/vbl1122Sc/+cmdO3euW7duw4YNAwMD3/3ud5vNZuvy3bJlS/sn/PGPfxRCfOhDH1q/fr0QIpPJ3HXXXfLPL3rRi/761782m82f/OQntm2vW7dOCPGGN7zh8OHD8r/93ve+d/nll69bt27dunVDQ0NCiGPHjjWbzfvvvz8Wi8kG3HHHHf/9739DKBEi68EHHxRCfO5znzt9+rT8yt/+9rc//elP8s/LXo0/+tGPrrzySnlHvPGNb3ziiSeaK1zn8gbZs2ePvCk2b95cLpebK1/8LdxZoSGQwiYDKZPJfPScr3/9681mc2FhoRVIQohEIvHjH/947969GzduPHr06HPPPffxj3/8qquuOnPmzGOPPfba1772k5/8pOe2OXDggBDi1ltvPXny5P79+4UQr3nNa/7617+eOHHi5S9/+Wc+85lHHnnk0ksv/chHPvLUU089/PDD27dvf/Ob39xsNufn59evX/+5z33u6aeffuihh6699lp52xw+fNiyrK9+9avPPffcH/7wh8HBwW984xtqqoZoOHPmzAc/+EEhxFVXXfX+97//W9/61j//+U/5r5a9Gh955JENGzZ85jOfefLJJw8dOhSLxT760Y+udJ3LG+Smm26q1WoPP/ywbdt33XXXShd/e6u4s0JDIIVNBtINN9zwf8750pe+1LwgkH71q181m8377rtPCHHnnXc+8MAD//73v48ePXrmzJlms3n99dd/8Ytf9HyyvG1c15X/aFnWt771Lfnnd73rXXfeeee9995r2/azzz4rvyiH5h999NEvf/nLL37xi0+dOiW/XigU5G3z1a9+NRaL/facm2+++frrrw++Qoi6v/zlL3v37n3b295mWdYll1win9iWvRrvvffe9kv34MGDv//971e6zuUN8tBDD8mv33LLLbfffvtKF397e7izQsMckhof/vCHPXNIHjfccIMQ4r3vfe93vvOdiYmJ73//++vXr//whz/8zW9+Uw4LrOSFL3yh/MP69es3bdok//yCF7xACPH4449fc801rXFz+bx29OjRarV6zTXXbNhw9mJ45StfKf/w6KOPPvnkk7fffnvrw+PxePf/r0CnHn744X/9619vetObduzYIYR48skn77jjjk996lOjo6PLXo1Hjx51HKd16b7+9a8XQtx3333LXufyH1/2spfJP1xyySVnzpxZ6eK/EHdWCAgkTcmJorm5ude85jUHDhx4+umnv/71r3/hC194z3ve89a3vnVtn3n11VcfOXKk0WhYliWEmJ+fF0Jcc801mzdvdl332Wefveyyy4QQsq8mhHAcJx6Pu64rI/DQoUP1et2X/ztgWb/85S+/9KUvHT9+XF6KV1555djY2H333ff4448vezX++c9/PnLkyH//+1/5S/8b3/jGM888s9J1/uijj174HVe6+LvCneUXln1r7Ze//OV73vOeubm5Sy65ZNu2beJcUG3YsOHw4cPlcrmrT3v/+9/faDQ+8pGPnDhxYm5u7rOf/exb3vKWl7/85R/4wAeeeuqpj33sY8ePH//LX/7yxS9+Uf79973vfcePH//85z//r3/9q1QqveMd75ArL4CAvPOd75Qb9R566KFnn332oYceuvfee6+++urt27cvezXefPPNtVrtrrvuOnHixK9+9au777772muvXek6X/Y7rnTxd4U7yzeqxwwjZ2lpSQgxMTHh+bp8eqpUKr/97W+FEHI8+uTJk3JljhDisssu+9SnPiXnkL7yla9ceumljuO0f4Ic6T558qT8xyuuuOInP/mJ/PO73/3uO++8s9ls/vrXv968ebMQYv369W9729uOHj0q/8L9998v16peeumlt956qxDixIkTzWbzZz/7mRxMGBwcHB0dZS0Qgvab3/zm1a9+desX1A033NCa9Vn2avzhD3/4ohe9SAgRj8c/8YlPyOV5y17nnhvktttuu/3225srX/wt3FmhWdfktG/tnTx5sl6vb9q0SQ4I9O748eNXXHHFxo0bPV9//PHHX/ziF7eGwlueeOIJ27ZbQ+FAoJrN5rFjx44fPx6Pxz17esQKV+Px48evuuoquRS7/YvLXufLWuni7wp3Vo8IJACAFphDAgBogUACAGiBQAIAaIFAAgBogUACAGiBQAIAaIFAAgBogUACAGiBQAIAaIFAAgBogUACAGiBQAIAaIFTZnt16sQ/PV+55CWblbREExQEq+MK8aAgLZz23avK7usv/OLV+fsie0lREKyOK8SDgrTQQ+qJfLRJ7Pt/7V9c9vKKCAqC1XGFeFCQdswh+catNVQ3QS8UBKvjCvGgIASSb7KF+clSVXUrNEJBsIrM+NwUl8f5iuV6trCguhUqEUi+mRjZnp+p8IzTQkGwksz4nBMbyA0nVDdEL2OpuGNbmfE51Q1RhkDyjROzxnbG8zMV1Q3RBQXBstz6UjppT4xsU90QHeWGE+mk7daXVDdEDRY19GrDS65uzUD+T33pf4QQ9oDSFilGQbASt9b4v4WFr7zqlc7/jlT+V3VrtNF+ywghbhdC2AOZfYd++LGrnJilrl0KsOy7V549BG69MXTfE5W7b1TVHuUoCJbl1hrZwnxuOPGmK5/y/KsIrm9ut+w+pPx0ZfJgdXb3jkhlEoHkv8z4XDppMz7eQkHQSqN00lbdFmNMlqr5mUqkMok5JP9NjGyfPFhlMr+FgkScW2sk7jlAGnVrLBXPDSUy++aic+/QQwrEZKk6VarO7tmhuiG6oCCRJdNods91pNHauLVGZt9cRPpJ9JACIe+9YrmuuiG6oCDRRBr1zolZs7t3RKSfRCAFwolZueFExPe4taMgEUQa+SU6mcSQXYDk71/2W7RQkOggjXwXhbE7ekgByg0liuU641QtFCQiSKMgRKGfRCAFyIlZuaFEfpqjCs6iIFFAGgWn7zOJQAoWk/keFKS/kUZB6+9MIpCCxWS+BwXpY6RROPo4kwikwKWTdjpp8yu4hYL0JXkWA2kUDjn63X+ZRCCFQU7m99ml0wsK0n84GShkrXMcVDfETwRSGOTjTLYwr7ohuqAgfUYeV0gahWwsFR/bGe+n9ycRSCFhMt+DgvQNOfrK4blKyF5p3wyAE0ghYTLfg4L0h/x0xa0tcUqhQqOpuFtb6o/dFARSeNJJ27GtyVJVdUN0QUFMVyzXJw9yZq5iTsyaGNleLNf74FYikEI1MbKdV3q3oyDmcmuNzPghDoLSgcyk/EzF9IVCBFKonJjVTwO+vaMg5mKRt1ZaC8FVN6QnBFLYWPHsQUFMxLI6DclFd0Y/3hFIYTt7nhvjVOdQEOPIuQqW1WlILnAwdzKJQFIgnbTd2hIrnlsoiEHcWiNbWCCN9GT6ZBKBpIATs0ZT8f5YpukLCmKQbGF+7xAnMujL6F3nBJIabAv1oCBGYLDOCGOpuDj3wzILgaQGfQIPCmIEButMYeiGCgJJGfoEHhREc9nCwlgqzmCdEQzdUEEgKcPZOR4URGfyIAC2wRokN5Qwbq0QgaSSPDvHrCsmUBREW/npCmlkFhOHwQkkxegTeFAQDbm1RrG8KKfKYZB00i6WFw16wiOQFKNP4EFBNJSfqewdYi2DeZyYNTGybap0THVDOkUgqZcbTpjVrQ4aBdHNZKk6SvfITOmkbdDjHYGknmMPCFaXtaEgWpksVcdScSdmqW4I1sKJWY5tmfKERyCpZ+LcY6AoiFamStVdyUHVrcDa5YYTpjzeEUhaSCdtt94w5aIJAQXRB8sZTOfYA6YsbSCQtCCPnzJo7jFoFEQTcrxOdSvQEydmpZOD+x9ZVN2QiyOQdCHnHg09ozcIFEQH+8uLjNf1gdFUnB4SuiCP+jDx+KmAUBAdFMt1zgrqA3IMXHUrLo5A0oh8d6rqVmiEgijn1hqsr+sDTsxyaw39xxsIJI3IBZomHhofEAqiVrFcTzNe1y/SyUG3vqS6FRdBIOklN5yY4vdvGwqikFtrOLEB1a1AhBBIenHsAZY7t6MggC+c2ID+C+0IJL04MWtsZ5zlzi0URKEjtYZjM4HUJ4z4URJI2jFlgWZoKAgQEQSSduRMPr+CWyiIKltilhFrhdEJt97Yov2CSQJJR5zk5kFBgCggkHRkyi620FAQJZyY5dZ0XyiMDhnxoySQdMQglQcFUUIucVTdCvjDrTf0P3SDQNIUL6nzoCDhk9v7VbcC/jDi0A0CSVM8nHpQECXSyUE6pn3AlFPbCSRNMUjlQUGUSCdt/XdT4qL2l834IRJI+mJpmQcFCd+urYOTBzm6yXjFcn00tUl1Ky6OQNIXS8s8KEj4HHvArXF0k/HcmgErGgSBpDMGqTwoSPicmDWWijNqZzRTJpAEgaQ5RvA9KEj4RlObGLUzWn6mYsR4nSCQNLdr6yCDVO0oSPjSSZuOqbnk68SMGK8TBJLmHHuAXwTtKIgSLCcx11SpmhtKqG5FpwgkrTFr4kFBlJDP15TdOMVy3a03TJlAEgSS/ox4rVaYKEj4nJhFJ8lE+emKQd0jQSDpbzS1iSfTdhRECTpJxjGueyQIJP1xZI4HBVHCiVm54US2sKC6IehUtrAwMbJNdSu6QyAZgAMuPSiIEumknU7aDNwZIT9dkT8v1Q3pDoGkOydmccBlOwqiUG4oMXmwygOB5txaY++MYbNHEoFkBn4FeFAQJZyYlRtKZPbNqW4IVpMtzM/uuU7/l01ciEAyQDppH+H3bxsKotBYKs7Anc7kj8a4wTqJQDLArq2MUJ2HgqiVG0oUy3V+BBoqluuTB6uze3aobsgaEUhmYF2ZBwVRqLXijoFT3Zi4sq4dgWQAxx5Q3QS9UBDl0kl7bGc8W5hX3RA8LzM+N7YzbuhgnUQgGcCJWTyKtqMgOsgNJ5zYAJNJmpA/iNyweSvr2hFIZuBXsAcF0YGcTCKTlDN96qiFQDKDY1tufUl1KzRCQXTgxKyJke0scFCrWK5nCwuzu41PI0EgAeiFzCQWOKji1hqZ8UMTI9tM3HV0IQLJDE5sgBu+HQXRhxOzJka2ZfbN8RMJmVtryD2wRi9kaEcgAehVOmlzgkP4soX53HCib9JIEEimcGyLswnaURDdjKXiYzvjiXsOqG5IVGTG50ZTZi/yvhCBBMAfueHE2M54Zpx+UuAy43PppG3Wu446QSAB8I0cQeK1SYHKjM85sQHTtxwti0AC4KfccMKxLTIpIDKNjD4faBUEEgCfkUkB6e80EgQSgCCQSb7r+zQSBJIp3HpjS19sfPMLBdEfmeSjKKSRIJAABIdM8kVE0kgQSAACJTOJ/UlrFp00EgSSKdzaUn+cVeUXCmIQuT+JTFoDud8oImkkhNigugHoiFtv8Fa6dhTELHLTTOKeA7O7d/Ak0Ql5Tt1oKt5/u19XQQ/JDBxb6UFBjHP2HAfOYO1ANNNI0EMyCM+VHhTEOLnhxJaYldk3Rz9pFTKN+uzU1A4RSAYoluvcve0oiLnkIz+ZtBK31kjcc6Cf3ijRFYbsDODWGtG8OldCQYw2lorP7t7B2N2FIp5GgkACED4nZs3u3pEtzPPu85ZiuZ7ZNxflNBIEkhH2lxd3JQdVt0IjFKQPyHef56cr+emK6raoVyzXs4WFiZFtUU4jQSAZgSkTDwrSH2QmFcv1iGeSTKPZ3TsinkaCQDKCW2PPzXkoSN8gkyZL1WxhoXL3jTxjCQJJf3Lil4u1hYL0mShn0mSpOlWqVu6+UXVDdEEg6a5Yrkdtc9zqKEj/iWYm5acrU6Xq7J4dqhuiEQJJd0zge1CQviQzSQgRkUzKFhaK5Tpp5EEg6Y51sR4UpF85MWs0FRcRyKRsYcGtLZFGFyKQdOfWGoxQtaMgfSwKmUQarYJA0tpkqcov33YUpO/1dyaRRqsjkLS2v7yougl6oSBR0MqkPnvVbGZ8TghBGq2CQNJasVwfTW1S3QqNUJCIcGJWn73+PFIvfl0zAklrnCLqQUEipW8ySfaNSKOLIpD0xXyJBwWJoNFU3LEto+eTZKAyUtcJAklfbLjxoCARZPoah/x0hVUMnSOQ9DVZqjI81Y6CRJPMJBPPcchPV9j92hUCSVNyeIoT21ooSJSZeLbQZKlKGnWLQNIUw1MeFCTizMqkYrmen6mQRt0ikDTF8JQHBUErkzQ/Pqr1fiPVDTEPgaQjhqc8KAgkmUnZwoJ8C4mG3FojM35oYmQbl+saEEg6mipVGZ5qR0HQ4sSs3FAis29OdUOWly3Mz+65jt782hBIOiqWF9lw046CoN1YKj62My53m2olMz6XTtqk0ZoRSNph+6cHBcGFcsMJJzag1QIH2ZjccEJ1QwxGIGknP1PhuLZ2FATLyg0l9FngUCzXJw/y+tdeEUh6mSxVhRB0+VsoCFaizwKH1kIGtc3oAwSSXvaXF3NDdPmfR0GwCrnAIVuYV9uMbGF+YmQbj029I5D0wnyJBwXB6sZUn3QnO/Fcpb4gkDSSLSxwWbejIOjExMj2yYNVJQN3bq2RLSxMjGwP/1v3JQJJI8VyneGpdhQEnVA4cCcH69gD6xcCSRfyaByu7BYKgs7J+ZuQV9wxWOc7AkkXLG72oCDonHzlecjvls3PVNh15C8CSQuTpapjW6zSaaEg6FY6aTu2JXstIeASDQKBpIWpUnWUjn8bCoI1mBjZnp8Jabnd/vIi3SPfEUjqFct1t95gJLqFgmBtnJgVTieJ/doBIZDUy09XWEvWjoJgzXLDiRA6SUxwBoRAUozegAcFQS/kTFKgy+2YPQoOgaQYvQEPCoIejabigR7csL+8yARnQAgklegNeFAQ9C6dtN16gKc2yB1ywX1+lBFIKtEb8KAg6J1c2hDQqJ08XJH92gEhkJShN+BBQeCXdNIO6Gi7/eVFxyaNgkIgKZOfrvAClXYUBH7ZtXVwKpjF38VyfQvdo8AQSGqwj8GDgsBHjj0Q0DSSW2twlQaHQFKDU7A8KAh8FNA0kvxAJpCCQyApwD4GDwoCI7i1Rjo5qLoV/YxAUiBbWKA30I6CwHdObCCIdQ1ObMD3z0QLgRS2/HRlLBWnN9BCQRAEx7aOqHiHLHqxQXUDosWtNfbOVCp336i6IbqgIAiO78vhjtQarPkOFD2kUGUL83uHEkyKtlAQBCTQwxoQEAIpPHLjJ5MlLRQEZtkSs8i5QBFI4WHjpwcFgXHc2pLqJvQzAikkbPz0oCAIVLFc9/3qcughBYxFDSHJz9AbOA8FQaDcWsP3uUnHZs13sOghhSFbWEgnbXoDLRQEgQroZFWZcIG+/S/i6CEFzq01JkvV5tfeorohuqAgCFqxXA/o2Piz54gng/hs0EMKXrYwz9hUOwqCoO0vL+4K5oyfXcmgzhGHIJCCJqfuecdPCwVBCIJ7qWvQr6ONOAIpWBxi7UFBELRAX+oa6OtoQSAFKD9dYeq+HQVBCIIbr5NGU/H8dCW4z48yAiko8pQ2JktaKAjCIXtIwX2+HLWjkxQEAikoTN17UBCEQB4eH+i3cGJWOmlPlY4F+l2iiUAKBFP3HhQE4dg7UxlNbQr6u+SGEvSQgkAgBYKpew8KghCE9m4t2UnKFhaC/kZRQyD5j2MIPCgIwrF3ppIbCum5R3aSAjoSIrIIJJ8Vy/Viuc5kSQsFQTiyhYUw360lO0n5GZbb+YlA8hmvVPCgIAiBfO4JeVg4N5Rwa0tMJvmIQPITr1TwoCAIh5LnHidmjabizCT5iEDyjVtrZAsLEyPbVTdEFxQE4VD43DOWiju2xT5ZvxBIvskW5sMcwtYfBUEIiuW62ueeiZHtcsBQVQP6CYHkj2K57tYbrGxuoSAIR366MrvnOoXPPQzc+YhA8ke2sMDUfTsKghBkxuec2IDyScqxVHxsJ5nkAwLJB5wZ6kFBEAI5SqbJc89oKu7WlphM6hGB1CvODPWgIAiB8qkjDydmMZnUOwKpV5wZ6kFBELRzCzi3abVkRmZStrDA8Q1rRiD1hDNDPSgIQpAtzOeGEhqOCTsxKzeUyOybU90QUxFIPckWFlhI1o6CIGhyIYO2Dz0scOjFumazqboNppLXHMNTLRQEQcsWFtza0uyeHaobshq31pgqVYUQPJx1ix7SGnFmqAcFQdAmS1X900ic25lULNdZdNctAmmNODPUg4IgUMVyfapU1T+NpNaiOzKpKwTSWnBmqAcFQaDkIm9T0kgik9aAQFoLpu49KAiCI9OocveNqhvSNTYndYtA6pp8Dxi9gRYKguCc2wBr6miwzKT8dIVM6gSB1B0l7wHTGQVBcFppZPTjDpnUOQKpO0zde1AQBKQ/0kgikzpEIHWBqXsPCoKA9FMaSWRSJwikLjB170FBEIT+SyOplUnySQ4X4qSGTnEMgQcFQRD6NY1a3FojW5hPJ20e5i5EIHXErTUS9xxofu0tqhuiCwqCIJi7wrsrZNJKGLLrCK9U8KAg8F1E0kiwZ3ZlBNLFyUlIbU8XDh8Fge8mS9WIpJEkM2nyYJVMakcgXVx+ukLPuh0Fgb/y05WpUjU6aSQ5MWt29w76Se0IpItgZbMHBYG/soWFYrlu1jl1fpH9JLfeIJMkAukiWNnsQUHgIyPebxQo+ZJZIQSZJAik1eWnK2OpOL2BFgoCH2XG54QQUU4jSb4/SZzbShFlBNKK3Fpj70xFPrxAUBD4Sr6JnLWakhOzcsMJx7ZkSEcWgbSi/Exl71DCiVmqG6ILCgK/ZMbn0kmbNPLIDSfSSTtxzwHVDVFmg+oGaMqtNSZLVTZ+tlAQ+ELuCR1Nxdk2sCw5QZu458Ds7h0RfPijh7Q8Nn56UBD0jjTqRG44MbYzntk359YaqtsSNgJpGcVyvVhe5J5poSDonVtrZPbN5YYTXEgXlRtO5IYSEcwkAmkZvOPHg4KgR/Lwwz4+MtV3Y6n4xMi2qGUSgeRFb8CDgqBHMo1m91xHGnUlnbRnd++IVCYRSF70BjwoCHpRLNdJozWTxwtl9s1F5LV+BNJ56A14UBD0Qh7gTRr1QmZSRF41SyCdh96ABwXBmvX9q/ZCE53XnxNIz6M34EFBsGakkb8ikkkE0vOmSsfoDbSjIFgb0igIUcgkAul5k6UqvYF2FARrQBoFp+8ziUA6K1tY4JdvOwqCNXBrjcz4IdIoODKTsoWFvlwLTiCdNVmqco51OwqCbrHfKBytteD9l0kEkhDnxqYieJThSigIuiVPBiKNwtGvmUQgCSFEfqYymtqkuhUaoSDoljx+lzQKjXzVbGZfX70/iUASk6WqY1vcSC0UBN3KjM+N8irh0I2l4mM74/30/iQCSUyVqqPM3rehIOiKfPcrS2CUkO+q6Jt3nxNIgr2fHhQEnctPV4QQ7FdTSL7TT/4gTBf1QMpPV/jl246CoHPFcn3yYHV2zw7VDYm63FCiWK5PlqqqG9KrqAfS5MEqs/ftKAg6VCzX5ZYj1Q3B2c1JU6Wq6RtmIx1IzN57UBB0jmO8teLErNxwwvTJpEgH0v7yIrP37SgIOpQZnxvbybI6vaSTtukLHCIdSJOlKndUOwqCTsi5CjmXDq2MpuJubcncBQ7RDSQOI/CgIOiEW2tkCwsTI9tVNwTLkJNJkwdNnUyKbiDtLy/uSg6qboVGKAg6IU9k4MFFW/IEB0M7SdENJIanPCgILkoO1rExQHPyB2TiKvCIBhLDUx4UBJ3IFhaYOjLCxMj2/EzFuKNXIxpIDE95UBBcVLawsHcoQTfaCGcH7mYMG7iLaCAVy3Xuq3YUBKuTBwHQPTJIOmm7tSWzVjdENJDcWoPhqXYUBKvLT1c4lMEsTswaTcXNWt0QxUCS8yWqW6ERCoLVFct1jtw1UTppu/WGQZ2kKAYS8yUeFASrmyodo3tkIjmTNFU6prohnYpiIDFf4kFBsDq2BJgrnbTpIemrWK4zX9KOgmB1bAkwmhOz0knblJmkyAWSW2swFN6OgmB1+ZkKbyQx2mhq0+RBMzbJRi6QmC/xoCBYnVtrMF5nNMcecGtmLG2IXCAxX+JBQbAKVmD2ASdmpZOD+x9ZVN2Qi4tcIDFf4kFBsAo60P0hN5ygh6SdYrnOL992FASrowPdHxx7wK0bcK5dtAKJ0XAPCoLV0YHuD07MMuKg1WgF0pFaw7G5u55HQbCKYrmeZryuX6STg/qP2kUrkNx6YwuP7t9lUQAAC7RJREFUe20oCFbh1hpObEB1K+APJzagfycpWoHElIkHBQGgj2gFkhDCsXniOw8FwUqOaP9Ajc45tqX/DzRagcQMrQcFweqYYkSYIhRI/PL1oCC4KCPWCqMTRkwYRymQ6ks87rWjIFjdlpjl1pZUtwIREqVAYsnQ+SgIVkcHup+4tSX9f6ARCiQAXTFlez864dYb+q9gIpAALE9u79d/8wo6YcScMYEEYEXp5KBbZxrJeKac2h6hQOKYHA8KgotKJ20jXluA1e0vm/FDjFAgAejWrq2DprxsFKsolutGvPaXQAKwIoNeNopVmHKuP4EEYEVOzNo7lGDUzmimTCAJAgnA6hi1M11+pmLEeJ2IVCBtiVlsqmhHQdCJdNJ2bItRO0NNlqqObRkxXiciFUgA1iY3nMhPV1S3AmsxVaqOGjJeJyIVSA4Hc52PgqBD8sgGOknGKZbrbr1hygSSiFQgAVgbJ2blhhLZwoLqhqA7+enKxMg21a3oQoQCiYO5PCgIOjeWijOTZJbJUlUIYcrskRShQALQi9wwnSST5GcqueGE6lZ0J0KBJE+KVN0KjVAQdCWdtNNJm0wyQn66In9eqhvSnQgFkhDCiTHmcB4Kgq7khhJubYlrRnPFcn3vjGGzR1LEAomzRM9HQdAVJ2aNpuJ0kjSXn67M7rlOdSvWImKBFBvgEJR2FATdGkvF00mbbUnakj8a4wbrpIgFks3ZBOehIFiD3FCiWK4zcKehYrk+ebA6u2eH6oasUbQCadfWQbaCtqMgWAMnZk2MbM8WFlgUoxW31siMHzJx6qglWoHEzhsPCoK1ObdVdl51Q/C8bGF+71DC0ME6KWKBFLOEEAw1tFAQrJmcTGKBgybkD8K4jUce0QokwbqyC1AQrNloKu7WlljgoNxkqerWlsydOmqJXCClkzbrytpREKyZnExigYNaxXI9P1PpgzQSEQykXVsHuXnaURD0ggUOavXBQoZ2kQskpvE9KAh65MSs2d07MvvmyKSQubVG4p4Ds3uuM3ohQ7voBVLM4tDidhQEvZOL7sikMLm1RrYw309pJCIYSIJZkwtQEPRuLBWXmaS6IVGRLcyPpuL9lEYimoHErIkHBYEvxlLxsZ3xxD0HVDek/2XG50ZTcYNeBduhKAYSsyYeFAR+yQ0nyKSg9WsaiYgGErMm56Mg8JHMJDbMBiQzPufEBvoyjUQ0A0kIMZqKs5uvHQWBj3LDCce2yCTfyTTqm0XeF4poIKWTNoNU7SgI/EUm+a7v00hENpAYpPKgIPCdzKTMOOvufBCFNBKRDSQhRDppT5WOqW6FRigIfJcbTqSTNmscepQZn0sn7b5PIxHlQBpNxekQtKMgCALr7nok19SZfox3h6IbSAxSeVAQBKSVSZzj0BW31ujjFd7Lim4gCZaWXYCCICAykzhbqHPyZKBIpZGIeCCxtMyDgiA4ueEE5911SKZRbjgRqTQSEQ8kOUg1WaqqboguKAgC1TrvjkxahTzDW64HUd2WsEU6kIQQueFEfoZBqudREARqLBXnXRWr6L83SnQl6oHk2ANCCGbyWygIgibfn5QtzHOZeRTL9cy+ucimkSCQnJg1tjPO/psWCoIQyPfM5qcrLKJpKZbr2cLCxMi2yKaRIJAE+28uQEEQAplJxXKdTBKk0TkEEjP5XhQE4SCTpMlSNVtYqNx9Y8TTSBBIEjP5HhQE4SCTJkvVqVK1cveNqhuiBQJJCCHSSZtDCtpREIQmypmUn65Mlaqze3aoboguCKSzcsOJCN4Pq6AgCI3MJCFEpC65bGGhWK6TRu0IpLNY7uxBQRAmJ2aNpuIiMpmULSy4tSXSyINAOkveDxG5GTpBQRCyVib1/Wv9MuNzpNGyCKTnyZPc6BO0UBCETGZSf79qVr5qjzRaFoH0PCdm5YaYOHkeBUH4nJjVx68/j8iLX9eMQDqP3AdAn6CFgkCJvswk0uiiCKTzMHHiQUGgSp9lEmnUCQLJi4kTDwoCVfomk0ijDhFIXkyceFAQKNQHmUQadY5AWgZ9Ag8KAoVkJhn6SCSjlDTqEIG0DPoEHhQEahm6Z5bdr90ikJbH6jIPCgKF5OIas867y09XSKNuEUjLkzeA0SPX/qIgUMusM1iL5Trn1K0BgbSisVScE6/bURCo1cokzS9C+bY90mgNCKTV5IYT9AnaURCoJTMpW1hwaw3VbVmeW2tkxg+ximFtCKTVyNcC8e7UFgoC5ZyYNTGyLbNvTs9Myuybm91zHe9+XRsC6SImRrbz7tR2FATKpZP22M54tjCvuiFemfG5sZ1x0mjNCKSLcGJWOmkzTtVCQaCD3HAinbS1WuAgG5MbTqhuiMEIpIvLDSX0n0cNEwWBDuRCcE0GkFlW5wsC6eLYFupBQaADucAhP1NRPpkkFzLQN+odgdQRtoV6UBDoQD4bKZ9MyhbmJ0a2MXXUOwKpI/KlYUyctFAQaGJM9alC8lvLZqBHBFKn5IpnxqlaKAg0MTGyffJgVUl/3a019s5UJka2h/+t+xKB1AV53SsfsNYHBYEOFE5qysE6J2aF/637EoHUBSdmje2MswunhYJAE3L+JuQVd/LbMVjnIwKpO3KlKZP5LRQEOmituAvzm+ZnKqys8xeB1B15bAmT+S0UBJpwYlaY51pNlqrppM3KOn8RSF1jMt+DgkATYXaS8jOV0dSmcL5XdBBIa8FkvgcFgQ5C6yTRPQoIgbQWTOZ7UBBoIjecCOE6pHsUEAJpjUZTcbe2xGR+CwWBDuQAcqDX4WSp6tgW3aMgEEhrxFEFHhQEmhhNxQOd0dxfXhxlqXcwCKS1k4PITOa3UBDoIJ203XqA05lyAim4z48yAqknuaEEk/ntKAiUk0sbAhq1myxVx1JxjmYICIHUE00OG9YHBYEO0kl7/yOLQXzy/vKiY5NGQSGQeqXkzBKdURAot2vr4OTBQK7AYrm+a+tgEJ8MQSD1TsmZJTqjIFDOsQcCGjd2aw0mkIJDIPnAiVnppM0CsxYKArWcmOXE/J9GYnI0aASSP3JDCXbhtKMgUCuImZ5iuc7Z3oEikPzhxKzRVJw+QQsFgVpOLKhROwSHQPLNWCoe5mHD+qMgALpCIPlJTubzXNZCQaCKY1tH/L7wjtQarPkOFIHkJ84Y9aAgADpHIPmMM0Y9KAiUcOuNLX6fp7AlZgV6KBEIJJ9xxqgHBUHfcGKWW1tS3Yp+RiD5jzNGPSgIwlcs14PYwUoPKVAEUiA4Y9SDgiBkQVxsjj3g+2eiHYEUCM4Y9aAgCJOcs/T9TO5AzxGHIJCCI4cLuHZbKAhC49YawR2pENA54hAEUnCYzPegIAjN/vLirmQgZ3KPpuI8VAWHQAqQnMznV3ALBUE4gnupa9Cvo404AilYuaFEsVznkaqFgiBogb7UlWmkQBFIwZKT+ax4bqEgCFpw43XSaCrOBRwQAilwTOZ7UBAESvaQgvt8OWrHBRwEAilwTOZ7UBAEJ1tYCPqVRfL9k1OlY4F+l2gikMLAUQUeFAQBmSxVc0OJoL+LnAoN+rtEEIEUEo4q8KAg8F1+uhLccoZ2spNEL993BFJIeBGDBwWBv9xaY+9MJYTukSQ7STxR+YtACo/cUkdPv4WCwEfZwvzeoUQI3SPp7HpRnqh8RSCFR17BzIW2UBD4xa013HojNxxS90hKJ22eqPy1rtlsqm4DAAD0kAAAeiCQAABaIJAAAFogkAAAWiCQAABaIJAAAFogkAAAWiCQAABaIJAAAFogkAAAWiCQAABaIJAAAFogkAAAWiCQAABaIJAAAFogkAAAWiCQAABaIJAAAFogkAAAWiCQAABaIJAAAFogkAAAWiCQAABaIJAAAFogkAAAWiCQAABaIJAAAFogkAAAWiCQAABaIJAAAFogkAAAWiCQAABaIJAAAFogkAAAWiCQAABaIJAAAFogkAAAWiCQAABaIJAAAFogkAAAWiCQAABaIJAAAFogkAAAWiCQAABaIJAAAFr4/7aJQLdZl37BAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "t = linspace(0, 3);\n", + "subplot(1,5,1)\n", + "plot(sin(omega(1)*t), t); hold on\n", + "plot(0,0, 's');\n", + "set (gca, 'ydir', 'reverse' )\n", + "box off; set(gca,'Visible','off')\n", + "\n", + "subplot(1,5,2)\n", + "plot(sin(omega(1)*t), t); hold on\n", + "plot(0,0, 's');\n", + "set (gca, 'ydir', 'reverse' )\n", + "text(-2.5,-0.2, 'First mode')\n", + "box off; set(gca,'Visible','off')\n", + "\n", + "subplot(1,5,4)\n", + "plot(-sin(omega(2)*t), t); hold on\n", + "plot(0,0, 's');\n", + "set (gca, 'ydir', 'reverse' )\n", + "box off; set(gca,'Visible','off')\n", + "\n", + "subplot(1,5,5)\n", + "plot(sin(omega(2)*t), t); hold on\n", + "plot(0,0, 's');\n", + "set (gca, 'ydir', 'reverse' )\n", + "box off; set(gca,'Visible','off')\n", + "text(-2.7,-0.2, 'Second mode')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can confirm that the system would actually behave in this way by setting up the system of ODEs and integrating based on initial conditions matching the amplitudes of the two modes.\n", + "\n", + "For example, let's use $x_1 (t=0) = x_2(t=0) = 1$ for the first mode, and $x_1(t=0) = 1$ and $x_2(t=0) = -1$ for the second mode. We'll use zero initial velocity for both cases. \n", + "\n", + "Then, we can solve by converting the system of two 2nd-order ODEs into a system of four 1st-order ODEs:" + ] + }, + { + "cell_type": "code", + "execution_count": 57, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Created file '/Users/niemeyek/projects/ME373-book/content/bvps/masses.m'.\n" + ] + } + ], + "source": [ + "%%file masses.m\n", + "function dxdt = masses(t, x)\n", + "% this is a function file to calculate the derivatives associated with the system\n", + "\n", + "m1 = 40;\n", + "m2 = 40;\n", + "k = 200;\n", + "\n", + "dxdt = zeros(4,1);\n", + "\n", + "dxdt(1) = x(2);\n", + "dxdt(2) = (k/m1)*(-2*x(1) + x(3));\n", + "dxdt(3) = x(4);\n", + "dxdt(4) = (k/m2)*(x(1) - 2*x(3));" + ] + }, + { + "cell_type": "code", + "execution_count": 65, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGkCAIAAACgjIjwAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAAB3RJTUUH5AIbBzcCx5+nVwAAACR0RVh0U29mdHdhcmUATUFUTEFCLCBUaGUgTWF0aFdvcmtzLCBJbmMuPFjdGAAAACJ0RVh0Q3JlYXRpb24gVGltZQAyNi1GZWItMjAyMCAyMzo1NTowMtI1OFcAACAASURBVHic7d17XFRl/gfwh/sMBDGDmhOiA6itlm2WoOlvc6QATVfzUuFSAlovS9e27KWr6Qao7ZaZuUG6uRXQxdi85ool6+rQtmsC4qIrIDoyXhAvMAOGMyM48Pvj2DTNwMhl5pznOefz/guGYc7j1+fhe57r8WpvbycAAABC8xa6AAAAAIQgIQEAACWQkAAAgApISAJraWmZ5eTbb7+tra2dNWvWlStXuvIhly9fvnbtmodKeObMmVmzZjU1NXno8wF67OrVq6+++uoDDzwQFRUVHx//97//nc+re7RpSLPdISEJzGq1bt++vampKdJOUFDQjRs3jh492tra2pUPmTZt2jvvvOOhEjY2Nm7fvt1isXjo8wF6xmq1xsfH79y5c+7cub/73e9aW1unTp26e/du3grg0aYhzXbnK3QBgBBCZs+ePXfuXPtX2tvby8vLg4KCrFarxWIJCgoym82NjY0qlerMmTPXr1+PjIy84447CCEmk8lqtba0tJhMpsDAQNsntLW1mc3moKCghoYGo9E4ePBgQkhTU9O5c+cGDx4sl8ttbzt16lRoaOhdd91lX4DW1taTJ0/269fPoahWq7W6ujoiIoK7OoBQysvLy8vLDx48qNFoCCEvvvji4MGDP/7446lTp3Jv6LCuci8GBQUNHDjQ9qJzK7A1H4PBUFtbe8899/j7+3M/6qxpOPwi2l1PtIOgTCYTIeSjjz5yeL2qqooQcubMmf379wcGBmZnZwcEBLzyyiujRo3y8vLy9fWVy+V//etf29vbbRV00KBB9p9w6NAhQsi8efO8vb0JIRMmTFi2bBn3dVhY2LFjx9rb27du3apQKLy8vAghsbGxZ86c4X73ww8/DAwM9PLy8vLySkhIIIRcunSpvb19586dSqWSK8DcuXNv3rzJQ4gAOlReXk4IWb58udVq5V6pqqr6/vvvua87rKuff/55cHAw114efvjhq1evtnfSCrjms2DBAq7JRERE6HS69s6bhg3aXW8gIQmMS0gTJkxY+KN33323vb29srLSlpAIIZGRkV988UVGRkZQUNCFCxdaWlp+97vf9e3bt62trba29v7773/llVccGsZ//vMfQsjTTz/d1NRUVFRECBkxYsSxY8euXLkSHh6+ZMmS06dP+/v7v/DCC83NzSdPnhw+fPj//d//tbe3V1RUeHt7L1++/Pr16ydOnBg6dCjXMM6cOSOTydatW9fS0vLvf/87NDR0w4YNwkQNoL29ra3t2WefJYT07dv3ySefzMrKOn/+PPejDuvq6dOnfX19lyxZ8sMPPxw9elSpVC5cuLCzVsA1n6lTpxoMhpMnTyoUimXLlnXWNOxLhXbXG0hIAuMS0pgxY5750erVq9udElJBQUF7e/u2bdsIIfPnz9+/f39DQ8OFCxfa2tra29tHjx79+uuvO3wy1zD0ej33rUwmy8rK4r6eMmXK/Pnz33rrLYVCcePGDe5FbvD93Llzf/zjH/v06dPa2sq9np+fzzWMdevWKZXKf/5o2rRpo0eP9nyEAFw5cuRIRkbGY489JpPJ/Pz8uPu5DuvqW2+9ZV+xS0tL//Wvf3XWCrjmc+LECe71WbNmzZkzp7OmYV8etLvewBwSFZ5//nmHOSQHY8aMIYTMmDFj8+bNOTk5H330kbe39/PPP//ee+9xHf/O3HnnndwX3t7e/fv357728fEhhFy8eHHgwIG2kXHujuzChQt1dXUDBw709b1VN4YMGcJ9ce7cuR9++GHOnDm2D1epVN3/twK4x8mTJ+vr68eNG/fggw8SQn744Ye5c+cuXrw4JSWlw7p64cIFtVptq9gPPfQQIWTbtm0dtgLu27vvvpv7ws/Pr62trbOm4QztrmeQkNjATRSVlZWNGDHiP//5z/Xr1999990//OEP06dPf/TRR3v2mQMGDDh79qzFYpHJZISQiooKQsjAgQMjIiL0ev2NGzcCAgIIIVxfjRCiVqtVKpVer+dS4NGjR41Go1v+dQA9sGfPntWrV1++fJmrqMHBwampqdu2bbt48WKHdbW4uPjs2bM3b97k/uhv2LDBZDJ11grOnTvnfMXOmka3oN25gGXfLNmzZ8/06dPLysr8/PyGDRtGfkxUvr6+Z86c0el03fq0J5980mKxvPDCC1euXCkrK/v9738fFxcXHh7+1FNPNTc3L1q06PLly0eOHHn99de598+cOfPy5cuvvfZafX19SUnJpEmTuJUXAIKYPHkyt43vxIkTN27cOHHixFtvvTVgwIDhw4d3WFenTZtmMBiWLVt25cqVgoKCFStWDB06tLNW0OEVO2sa3YJ254rQY4ZSZzabCSE5OTkOr3P3RzU1Nf/85z8JIdyIc1NTE7f2hhASEBCwePFibg7pT3/6k7+/v1qttv8Ebiy7qamJ+/aOO+7YunUr9/UTTzwxf/789vb2vXv3RkREEEK8vb0fe+yxCxcucG/YuXMntxrV39//6aefJoRcuXKlvb39q6++4oYLQkNDU1JSRLzaB5jwzTff/OIXv7D9NRszZoxt1qfDuvrZZ5+FhYURQlQq1csvv8wtz+uwFTg0n9mzZ8+ZM6e986Zhg3bXG17tOO2bNU1NTUajsX///lyXv/cuX758xx13BAUFObx+8eLFPn362Aa7ba5evapQKGyD3QACam9vv3Tp0uXLl1UqlcOeHtJJXb18+XLfvn25pdj2L3bYCjrUWdPoFrQ7Z0hIAABABcwhAQAAFZCQAACACkhIAABABSQkAACgAhISAABQAQkJAACogIQEAABUQEICAAAqICEBAAAVkJAAAIAKSEgAAEAFMZ/T1y1Wq3XXrl2VlZVKpfLXv/41dxavlCEg4BpqiDPEpJdwuOotL7744vfffx8fH19VVXXu3LkdO3ZERUUJXSghISDgGmqIM8Skt4R9+gUl/ve//w0dOvSf//xne3v7jRs34uPjX3vtNaELJSQEBFxDDXGGmPQe5pAIIaS8vFwul2s0GkKIv79/XFxceXm50IUSEgICrqGGOENMeg9zSIQQYjAY+vXrZ3tgV//+/Q0Gg/PbsrKy+C3XzyxatIi3ayEg4BpqiDP6Y0J/k0EPiRBC2tra7L/19va2Wq0O78nKyiouLu7xJYqLi3vz61839svcV9PjX+8uBARcQw1x1pWYZO6r+bqxX48vkZ2d3ePfLS4uFvb+oCvQQyKEkICAAJPJZPu2ubm5w6eDx8bG9vgWg6sKPf51A79NCwEB11BDnHUxJqNjYxclRvbsEtnZ2b2MJ+XQQyKEkIiIiKtXr9bX13PfVlZWSny9JgICrtFfQ/RGi6+5gc8rdjEmeqOFz1KxBQmJEELGjh0bGBi4atWq2traPXv27N+/Pz4+3r2XGD169IwZM9z7mZ6DgIBrqCHOuhITX3OD3mDu8SXefPPN3pWRdhiyI4SQ0NDQtWvXrly5Mi4uztvbe/LkycnJye69RGxsbG9+XW+0DJZdJ6SHPf3uQkDANQZqiME8LJTXHlJXYuJnaiCkb48vMX369N6VkXZISLfEx8c/9thj9fX1wcHBHY78Sg0CAq5RXkP0RotfAK8JiXQhJn7mBr0xmOdSMQQJ6SdeXl59+/b85kV8EBBwjeYaojdYfEP4TkikCzHRGzCH1CnMIbFBbzD7mQRoXdRCQMCF3JI6eUO10KXogK+pQd5QrdUZhS4IpZCQ2KA3Wvz4XTJEOQQEXKP2fsXP1FB0ulHoUlAKCQkAxKZI1zhEbrr9+4TgZ25AD6kzSEhswLizAwQEXNDqjJroUKFL0TFNtAJbkTqDhMQMX1qHIISCgEBn9AbLIAV1C/84aqVMb7Cgk9QhJCQG6A0WagfEBYGAgAu5JXWpMSqhS9GpQQqZJjoU00gdQkJigN5o5vkQFMohIOBCXkndeFrH6zjpiZHoIXUICYkB6BA4QEDABa2ukeYeEiFErZBjGqlDSEgMOIsJ/J9DQKAzlI/XcdRKmVohQyfJGRISA/RGC7VrWAWBgEBn8krqUmL6C12K20tPjMQDvZwhITGgN8cDixICAh3S6oxaXaMmWiF0QW5PrZBrdY3oJDlAQmKA3mihdlOFIBAQ6FBeyaWMBDYOgFcrZakxKqy1c4CExACaN1UIAgGBDuWW1KVQP4Fkk54QmVtaJ3Qp6IKERLvckjr0BuwhINChzH01qTEqtZKZOxVuaUNuCXLST5CQGKBWyoUuAl0QEHCWW1qXzsh4nU16YmRmIZY2/AQJiXZFukbKd/nxDAEBZ7kldZpoBUPdI44mWoH13/aQkGiHyuoAAQFnmYU1TKz2dpYSo8L6bxskJAYwsYyVTwgI2MvcV6OJVjBaK7hi4zaLg4REO73BwtxAhEchIOAgo7CGudkjG7VSlp4YmZZfKXRBqICERDUmzkHhEwICDtLyK9laXOeMm0nCcjuChES5Ih32zf0MAgL29AZLbkldTtIwoQvSWzlJw7HcjiAhUU6rM2JFmT0EBOyl5VeIIBsRQtRKmSZagYE7JCSq6Q0WRqdqPQQBARutzqg3WkQzhJueEKnVGfXSPskeCYle3JEETA+OuxcCAvbS8ivF0T3iqJWy1FEqiQ/cISFRDUcSOEBAgMP0Uu/OpMSo9AazlJeAIyHRC0cSOEBAgKPVGTMKa8TUPeJgCTgSEr20OqPIbgB7CQEBTua+moMLRgpdCo/gun2SzUlISJTSGyzYAWoPAQEOd9COiG9NuNUN0hy4Q0KilFZnFM3yIbdAQIAQojdYMgprcpKGC10QD1IrZekJEh24Q0KiVF5JHeZL7CEgQAhJy684uGCk6DvKqTEqtUImwUNXkZAopdU1inhQogcQEBD9YJ29nKThuaV1Uhu4Q0KiEXdim+hvA7sOAQFuZd3BBQ8KXRCeSHPgDgmJRljf7AABARGvrOuMBAfukJBohPXNDhAQiZPUYJ09qQ3cISHRCOubHSAgUqbVGXNL66QzWGdPagN3SEjUwSN/HCAgEieyM+u6KzVGpYlWSGTgDgmJOljf7AABkbIJG8tSR6kkOFhnTzpbZZGQqKPVNaJDYA8BkSzuT3B6IquPJ3cX6Zxxh4REFwxPOUBAJEtvsEzYeBTZiKOJVqSOUok+JyEh0QXDUw4QEMniDmWQ+GCdvZQYlegH7pCQ6ILhKQcIiDRJdp23C2ql7OCLD4q7k4SERBEMTzlAQKRJyuu8XeOeKivinISERBEMTzlAQKQpc58IH77nLtxTZXNL6oQuiEcgIVEEw1MOEBAJmrCxTHzPJncjtVKWkzQ8s7BGb7AIXRb3Q0KiBYanHCAgEqTVGfVGC1bWufbj8Q0VQhfE/XyFLgBPrFbrrl27KisrlUrlr3/964iICIc3lJWVlZeX276Ni4sbNGgQnyXMK6lL4fHvLwICrvFfQ7h13jSfoEpPq0mNUeWV1GXuqxFZ8pZKQvrtb3/7/fffx8fHFxcXb968eceOHVFRUfZv2LJly7FjxyIjb/3v3nfffTz//dXqGvmcxUVAwDX+a0hafkVGQiTNg3VUtZqcpOETNpWliOuxLJJISCdOnDhw4MCmTZvi4uJaWlqmTJny0UcfvfHGG/bvqaqqmj9//syZMwUpIc/DUwgIuMZ/DeFm6Wm+36et1dgG7sR03yaJOaTy8nK5XK7RaAgh/v7+cXFx9t1qQkhra+uZM2dCQ0P37t176NCh1tZWnkuYWViTEtOft8shIOAazzVEb7Ck5VfSnI0Ila2Gu2kT04o7SfSQDAZDv379vL1vZd/+/fsbDAb7N+h0OqvV+vLLL4eHh1+4cCEiIuLTTz/t06ePw+cUFxdnZWURQmbMmBEeHu6u4ml1Rr3B0uFIRXFx8eHDh7kvYmNj3XVFBARc47mGuHGwznM1hM5Www3caaIVnQ3csdVkJNFDamtrs//W29vbarXav3Lz5s1p06bt3bv3m2++KSgoMBqN2dnZLj6wtrbWjcXLK7nU2fCUG//K20NAwDU+a4h7B+s8V0PobDW3XXHHVpORRA8pICDAZDLZvm1ubpbJfnY3cd99961du5b7etCgQVOmTCkrK3P+nNjY2EWLFrm9eFqd8eCLHY8Ch4eHc1fkbqncBQEB13irIdxgXc2Kse4oNSGerCHUthpNtCKvpK6zaVe2mowkekgRERFXr16tr6/nvq2srHRYr/nll1++/fbbtm+bm5v9/Pz4KVtuSZ1aIeN5nQwCAq7xVkPS8itykoYx8d9NbasR01ZZSSSksWPHBgYGrlq1qra2ds+ePfv374+PjyeErFix4vPPPyeEhISEfPzxxzt27Lh+/fqBAwcKCgoSEhL4KVuRrpH/3TYICLjGTw3hButYWU5Jc6vhzrjLLGT+qbKSGLILDQ1du3btypUr4+LivL29J0+enJycTAjZvXu3yWRKTk6eOHFiRUVFenr68uXLAwICkpOTU1NT+Slbbkkd/8d2ISDgGj81JLOQpTPraG41hJCUGFVafoVWZ6R5I9dtSSIhEULi4+Mfe+yx+vr64OBg28jv8ePHbW9YvHjxSy+9ZDAYwsLCfHx8+CmVgLttEBBwzdM1JHNfDXNn1tHZajhqpSwlRuXeCTn+SWLIjuPl5dW3b1+HeUh7vr6+/fr147MaCbvbBgEB1zxXQ/QGSwZT3SMbCluNTWqMSq2QMb0tSUIJiTZcvWHrDtGjEBDp4NYyCF0KEeJWNwhdip5DQhJMka4xPYHqrek8Q0Akgq21DGxRK2WaaAW7T/BDQhJMbkkdegP2EBCJyCwU2xnVVElPiOTOOhG6ID2BhCQMbvaeie0X/EBAJILbZ4Y7D8/hOkmMDtwhIQkDs/cOEBCJQPeIB+x2kpCQBODi8FBpQkAkAt0jfrDbSUJCEkBeySUsMbKHgEgEuke8YbSThIQkAMzeO0BApID7X8Z/ND8Y7SQhIfENs/cOEBCJwDQhz7hOktCl6B4kJL6hWTpAQKQAs0f8UytlzB3cgITEKzRLBwiIROAQd0GkJ0bmISFBZ9AsHSAgEoFjcwWhVsi1ukaGBu6QkHiFZukAAZEC/C8LRa2UZSRE5pVcErogXYWExJ/MfTVolvYQEInANKGAUmJU6CFBB3JL69As7SEgUqA3WLDrWUDc0gZWchISEk8we+8AAZEIrc6IfrCwNNGKotONQpeiS5CQeJJXUofZe3sIiETkldSNjw4VuhSSNn5wKHpI8BO9waLVNeI+0QYBkQ6trhH9YGGpFXK9kY0zhJCQ+JBZiNn7n0FAJCKv9BKO4RAcN41UpGNg1A4JiQ9anRHPQrWHgEjEKXOgWoFsJDxNtIKJUTskJI/jzpTETaINAiIpg/AfTYHxg0NNYUOFLsXtISF5HCZ1HSAg0mEOG4oJJBqoFfKb8jChS3F7SEiepdUZMXtvDwGRlNbAMHSFKdEaiIQkeXkllzIwWWIHAZGOmyz8BZQItVKmVsro/x9BQvKsXOy2+TkERDpMYUM1GJulhloha6V+1M5X6AKIGR495wABkRq1Ui50EeAWtVLeKqM9IaGH5EF5JTir7WcQEABwAQnJU7jZeywxskFAAMA1JCRPwey9AwQEAFxDQvIUzN47QEAAwDUkJI/A7L0DBAQAbgsJySMwe+8AAZEmvcEsdBGAJUhI7ofZewcIiDT5mRqELgL8RKsz0v8/goTkfnkll3A0jj0ERJr8zA2sPIZHIvzMSEjSg2crOEBApMnX1KA3WPQG5CQq6A0WX/SQpAbPVnCAgEiZvKFab8Q0kvCYGK8jSEhuh2crOEBAJA49JBroDRZ5Q7XQpbg9JCQ3w7MVHCAgUhbYUH0WCYkCrPwvICG5E7fbRuhSUAQBkThNtCK3tE7oUgDR6oxD5CahS3F7SEjulFlYg9029hAQiVMrZVjXQAOtrjFlFAMtEQnJbbQ6o95gwW4bGwQEBilkmuhQrGsQFkMDFUhIboPdNg4QECCEpMSoMvfVCF0KSSvSNbKysAgJyW2w28YBAgKEEE20AttjhaXVGVkZqEBCco/ckjq1QobdNjYICHDUSplaIdPqjEIXRKK4kXNWWiISknsU6RrxbAV7CAjYpMSo8kouCV0KiWJr5BwJ6WcqKiqysrJ68IvceQRuL4/gEBBwrSs1RBOtkFQPqcetxhPYGjlHQvpJfX39qlWr9u3b191fFOvDfhAQcK2LNUStlGmiFRJZ2tDjVuMJzB3c5St0AWgxY8aMqqoqq9U6ZMiQ7v7uWYOFlUUsXYeAgGvdqiEpMf3T8ivTE5m5Ve+Z3rQaT8hj7THNSEi3rF69uqWlZffu3aWlpd393YzCmpoVYz1RKgEhIOBat2qIJlrBLW0Q90Bub1qN23HPITu44EGhC9INSEi33HvvvYSQI0eOuKhJxcXF3NDwjBkzwsPDuRc9OjxVXFx8+PBh7ovY2FhPXKIzCAi41t0awm1I0izwbEIStob0uNV4Ql7JpYyESLaaDOaQeqK2ttb2tUc3nXm0vroRAgKu1dbWchuSPL26gaEaYt9qPCG3pC4lRsVQQAi7PaT29vbz58/X19d7eXlFR0eHhITwcNHY2NhFixY5vOjRRSzh4eHcFelZtGMPAWEIDU0mPSHS050k+mtIh63G7dLyK38cqKA9IPbYS0hHjx7dsmXLv/71L6Pxp1utvn373nPPPampqb/61a/4LExuSR0hhKFFLJ6GgFCIniajiVbkldSJfiZJcHqDJbekrv2dOKEL0m0sJaRTp0698cYbhw4deuihh6ZNmxYeHj5gwICAgIDa2tra2tpTp07Nnz//wQcffPXVV0eOHMlPkYp0jWha9hAQqtDWZNRKWXpiZFp+Jda8eFRmYU0GO3uP7LGUkFauXKlWq3fu3Dl8+PAO33Dx4sVPP/10wYIFhw4d6vFVvLy8uv5mrc548EWWFrH0AALCLgqbjESW23UrJu7FbveIsJWQPv30U39/fxdvuPvuu3//+9+/8sorPb7Ec88999xzz3XxzWwdEtUzCAjTaGsyHNF3knoQEzdKy6/ISRom1NV7iaWEZGtazc3N2dnZJ0+etFqt9m/Izs4OCQlx3QLdqOg0Hs79MwgIbWhrMhyuk8TQQ3oYwuLeI3tMLvtet25dbm7ujRs3Qn/Oz8+Pz2JodUacR2APAaEWJU3GJidpeGZhDZ4k63aZ+2oOLuBpBt0TWOoh2ZSXlyclJWVkZAhbDK2uMSep46F5aUJAqEVJk7FRK2Wpo1SZhTXsDi5RiFvjyvTkHJM9pL59+7a0tAhbBpwf6gABoRkNTcZBSoxKbzBL6hRwTxPBaYFMJqSnn366sLBw586dTU1NJjvt7e28laFI18jbtZiAgNCMhibjwLYEXKgCiExafmVGQiTT3SPC6JBd//79fXx8li1b5vD6oUOHlEolP2XQ6owYbbCHgNCMhibjTBOt4B5Lwfp9veC0OqNWZxTBwkUmE9IHH3zg5eW1ZMmSPn362L8eFBTEWxn0BgvrNyPuhYDQjIYm06H0hMgJm8rGDw5F5emNzH0imY1jMiFduHAhOTlZwJX+WLHqAAGhnOBNpjNqpSw9QeTbkjyNe/KhODI6k3NIv/zlLysqKgQsgEcPtGYRAkI5wZuMC6kxKuk8T9bttDpjRmENuxuPHDDZQ5o4ceL8+fMXL178yCOP+Pj42F5PTEzkZ4sfW4+p5wECQjnBm4xr6QmRafkV43UYuOs21jceOWApId24cSMgIIAQsmXLFrPZXFBQUFBQYP+GcePGKZVK29s8BwfkOEBA6ERPk3FNrZSlxKgwcNddYhqs47CUkFJSUoYMGZKWlrZ27do1a9Y4vyE4OHjdunW7du367rvvPFeM3JI6DYan7CAg1KKkyXRFaoyqSNeIFXddpzdYMgprRJbCWUpIq1atevfddydPnjxu3LgRI0ZwZ+l7e3tfuHChtra2urr6wIEDERERf/rTnzxdErVS7ulLsAUBoRM9TaYrMHDXLWn5FQcXjBTZyARLCWno0KGbNm06evTo5s2bv/zyy/r6etuP/P39Y2Ji1q9f/9hjj9kPkXsCJvAdICDUoqTJdBGeltR14hus47CUkDgjR47ctGkTIeTatWunTp0ym81hYWGRkZEyGU93CpjAd4CAUE7wJtN1mmhF6ihVWn6lOHbVeIhWZ8wtrRNl2mYvIdmEhIQ89NBD/F8XE/gOEBBWCNVkuiUlRpWWX4GdbS6IZhusMyb3IQkI7cQBAgLupVbK8HAKF9LyK9VKufgG6zhISABAlx+Pb6B0J6+AuDPrxNo9IkhI3YUJfAcICHgC1+3G8Q0ORD+7xmRCKisrO3bsmP0r165d27NnDw9PfNHqjJgvsYeAMEHAJtNjOUnDuQ6B0AWhxYSNZamjVGIdrOMwmZDy8vK2bt1q/4per3/11Vebm5t5uLpagT03P4OA0E/YJtMztuMbhC4IFbjELPpdw4ytsps1a5bJZLp06ZKPj8+RI0dsrxuNRj8/v+DgYE8XACvKHCAglBO8yfRGaozqrMEi+nGq29IbLBM2HhXTmXWdYSwhPfzwwyaT6dtvvw0ICBg9erTtdV9f39jYWD8/P49evUjXqO6LP74/QUDoJ2yT6T1uFbhWZxT3UJVrafkVIngabFcwlpBeffVVQsiqVauCg4NfeeUVnq+uN1o0Y8RfJ7oOAaGfsE2m97hV4BM2lR188UFp9sVzS+qIBAbrOIwlJM7rr79eW1v79ddfm0wm+9enTJni0UOL9QbzCM99OoMQEFYI1WTcQq2UpY5SpeVXiOapP12nN1gkdZYSkwnp4MGDCxcutFqtDq9PmDDBo62rVR6GJc72EBBWCNVk3CUlRqXVGSW4CzstvyInaZh0uoZMJqTPPvssIiJi/fr1Q4YMsX/d048aaw0Mk07N6AoEhBVCNRl3sQ3caaIV0qly3GCdpHIwk8u+GxsbJ02adO+99/r/nKeve1MehiXO9hAQVgjVZNxIasc3+wK30QAAIABJREFU6G8tLxwudEF4xWRCeuCBB44fPy50KQCYIY4mI6njG6Q2WMdhcsguMTFx4cKFL7zwgkajCQoKsn/dozd9GKFygICwQqgm43bcwN34wSJ/iJ8EB+s4TCakzz///Nq1awcPHjx48KD96+PGjVMqlUKVCoBaomky3MBd5r4azQLRJiSprayzx2RCWrt27Zo1a5xfv+OOOzx30ZvoDfwcAsIQQZqMh6TGqPJK6kS84o7bBivNxsVkQgoICPDy8tq3b9933303ePDgkSNH3nXXXRERER69aKs8TK2QYhXpDALCEEGajOeIeMWdVmfUGy0S2QbrjMlFDdeuXUtKSlq6dOnevXuPHz9+9OjRxx9//LPPPvPoRVsDwzz6+cxBQBgiSJPxHG6rbGahCFc3SPzgPiYT0ubNm2tra3fv3v3EE08QQubOnZuamrp582ZPX1etxBLnn0FAWCFUk/GclBiV3mAW2cMpMvfVaKIV4l6v4RqTCam0tPSpp56ybfHz8fFJTk6+fPlydXW1sAUDoJP4moxaKUtPjBTTwyn0BktGYY2Uu0eE0YQUFBTk8ByX+vp6wuYMLQAPRNlkuM6EaHISt/FI6FIIjMmEFB8fv3Xr1h07dpjNZqvV+r///W/lypVRUVF333230EUDoJFYm0x6QqRWZ9QbLEIXpLe4tQxiXTfYdUyusktKSjp16tSKFSva2toIIfv37x80aFB2drbQ5QKglFibjG11A+t9i8x9zP8T3ILJhEQI+cMf/pCcnFxeXt7Y2Dh48OCHH37Y15fVfwsAD8TaZFJiVBM2lTH9BD/uXAZ2y+9GDNfIqKioqKgooUsBwAxRNhkRnN2QV1In2Y1HDphMSM3NzdnZ2SdPnnR4vkt2dnZISIiHLnpTHqbGImc7CAhDBGkyvNFEKzILaxjtJKF7ZI/JhLRu3br8/PwHH3ywT58+9q/7+fkJVSQAmom7yXCdpLySSyz+WRfBBJgbMZmQysvLk5KSMjIyhC4IABtE32QY7STlltSpFTK2yuxRTC777tu3b0tLC88X9TU36I3Mry51IwSEIYI0GT7ZOklCF6R78krqUiS/1Nsekwnp6aefLiws3LlzZ1NTk8lOe3u75y7qZ2rQG8ye+3zmICAMEaTJ8EwTrWBrT5LeYNHqGrH3yB6TQ3b9+/f38fFZtmyZw+uHDh1y/XCXioqKf/7zn4sWLXL+UVlZWXl5ue3buLi4QYMGuaW0NENAJEIKTUatlGmiFTysWHNXTDILa5CNHDCZkD744AMvL68lS5Y4zNDaPwrTWX19/apVq5qbmzusSVu2bDl27Fhk5K2qfN9994n+7y8CIh0SaTLpCZETNpV5NCG5MSa5JXXSfAqfC0wmpAsXLiQnJz/33HNd/5UZM2ZUVVVZrVbb+ZIOqqqq5s+fP3PmzM4+wc/coDcGd7ustEJAJEWQJsM/tVKmVsg8t7TBjTHhHjAovuc59RKTCemXv/xlRUVFt35l9erVLS0tu3fvLi0tdf5pa2vrmTNnQkND9+7dq1AoRo0aJY7lsC4gIJIinSaTEqPy3CZZN8YEyxk6xGRCmjhx4vz58xcvXvzII4/4+PjYXk9MTPT39+/wV+69915CyJEjRzqsSTqdzmq1vvzyy+Hh4RcuXIiIiPj0008dBjcIIXqDJSsrixAyY8aM8PBwt/17OldcXHz48GHui9jYWDd+MgIiKUI1meLiYp5rSGBDtd7ol5WV5Yka4saYaPX3fjbtLvcWr0NsNRkmE9KWLVvMZnNBQUFBQYH96+PGjXM9Q9uZmzdvTps2bdGiRREREWfPnn366aezs7MdNm34mhoI6c99XVtby0/r4ucqzhAQkRGkydjjrYaMGzHY719lp/1dzY15SNdjsr/O57G72/iJCVtNhsmEtHbt2jVr1ji/3uOHu9x3331r167lvh40aNCUKVPKysqc3+Znavh18vN8DvuGh4dzc6fcbSZvEBCREarJxMbGdjj57znh4eHJj7TojZZY2XU+r0u6E5OyvhOmR4fG8jJkx1aTYXIfUkBAQEBAgFarXbNmTX5+/smTJxsbG4ODg728vHr2gV9++eXbb79t+7a5ubnDwV9fc4PeKImdNwiIyAjVZASREqMS5NHmXY9JbkkdTmfoEJMJ6dq1a0lJSUuXLt27d+/x48ePHj36+OOPf/bZZ939nBUrVnz++eeEkJCQkI8//njHjh3Xr18/cOBAQUFBQkKC8/v9TA0MbbvrAQRErIRqMoLg1tqd5esYke7GJK/0klopw/q6DjE5ZLd58+ba2trdu3d/8sknTU1Nc+fOvXbt2ubNm5955pnb/q79LeHu3btNJlNycvLEiRMrKirS09OXL18eEBCQnJycmprq/Lt+5oazovv7i4BIgVBNRkBaXWPKqP4e+vBexgTdo84wmZBKS0ufeuop21YAHx+f5OTkzZs3V1dXDx061MUvPvfcc/ZbMY4fP277evHixS+99JLBYAgLC7NfhmRPrZRrdcZ0Ip4nlyAgEiFUkxGKJlqR9bWnBpN7GZNT5sDfRod6qGysY3LILigoqLm52f6V+vp60osZWo6vr2+/fv1cNC21Qlq9bARENIRqMkIZPzjUFOYq0XrObWNiFqhgTGAyIcXHx2/dunXHjh1ms9lqtf7vf/9buXJlVFTU3Xff7dHrqpUynG9tDwFhhVBNRihqhfymPEzoUnQKQ3adYXLILikp6dSpUytWrGhrayOE7N+/f9CgQdnZ2Z6+7iCFTK/H39+fICCsEKrJCEWtlLUGht0MbBW6IB1oDQzDiobOMJmQCCFpaWn9+/fv06dPY2Oj2WxesGABP9fVRIcy9xAwj0JAWCFUkxGKJjqUEOoej2QOG/pYS5vQpaAXkwmpurr6N7/5jY+PD3ckxuTJkz/88MPXX3/9iSeeELpoADSSZpNppW/UrjUwbEC4AKdIsILJOaTNmzeHhITYdlF88cUXjz766IcffsjDpTXRiqLTjTxciBUICBMEbDJCUSvlrYHUJSRwjcmEdPr06UmTJtnWsIaEhLzwwgunTp3S6/WevvT4waGCbAKnFgLCBAGbDEDXMZmQwsLCLl++bP+KxWIhP9+t5iFqhRzryuwhIEwQsMkAdB2TCemRRx7Zs2fP+++/f/HixWvXrh06dGjp0qXh4eEDBw709KW55THoE9ggIEwQsMkIRa2QUbjym8IiUYXJRQ3PPvtsVVVVVlbWe++9x73St2/frKwsfm73sBvUAQJCP2GbjCD0RgudNZPOUlGCyYTk7e39pz/9ad68ecePH29qaoqIiBg7dqxcLufn6tw0PhY62yAg9BO2yQjF19xAKDvXytfcsP+iN07b6gyTQ3ac8PDwxMTEp5566uGHH7569eqUKVMuXrzIw3Uxje8AAWGFUE1GEHqD2c/UIHQpHFFYJKow2UM6efLkwoULz58/7/B6aysfG7Mxje8AAaGfsE1GEHqjxS+Aur/+fuYGvTFY6FLQi8ke0vvvv2+xWJYuXXrnnXfOmjVrxYoVffr0Wbhw4aBBg3i4Ove0FfQJbBAQ+gnbZAShN1h80R1hDZMJqaamZvbs2fPmzUtMTAwNDZ0zZ86bb76Zk5PT0tLCWxmwG9QBAkIzGpoMEEJ8TQ16gwWPtewMkwlJJpMZjUZCyJAhQ3Q6HSHkgQceMJlM3Nc8SE+MRIfAHgJCOcGbDM9yS+rkDdVCl6Jj8oZqvdFTz2piHZNzSA888MDu3bvvueeeESNGrF+//ujRo3V1dYQQb2+e8itmTRwgIJQTvMnwz8/UQEiI0KXoQGBDNValdobJhDR//vwjR4588MEH//jHP6KiopKSkgghgwcPtp2M4mm23aCoVRwEhHKCNxmeFekah8hNdCYkTbQCz1nuDJMJqU+fPjt27DAajV5eXnl5eYWFhVarNSEhgc/bPbVChtscewgIzWhoMnzKLal7ldbHhKuVsiMYTugEkwmJo1AoCCHBwcEzZ87k/+opMaq8kjrc5tggIPQTtsnwJrekjhAyiNYDEQYpZGofGYYTOsRSQiotLa2srHTxhieffFIm46kWaqIVmYU1/FyLCQgIhahqMnxKjVGRqyeELoUrGE7oEEsJ6cCBA7m5uS7eMHnyZN5al23zDWoVBwGhEFVNhjd5JXUpMaofrgpdjs5hOKEzLCWkpUuXLl261PbttWvXqqqqmpubIyIiBJmbxRluDhAQ2tDWZPih1TUeXPBg1vdCl6NzGE7oDEsJyV52dvZf//pX7pkuhJD777//nXfe4fks/fGDQ9PyK9MTcZtzCwJCMxqaDA8y99WkxqiELsVtcMMJmftq0FgcMLnGZvv27VlZWfHx8Z988sm2bdvS09Nra2tfeuklnouhVsj1Bgs2hNogINSipMnwILe0LiWmv9CluL30xMjc0jqhS0EdJntIhYWFjzzyyLp167hvR4wYoVar09LSLl68ePfdd/NWDLVSpokOxSCVDQJCLUqajKdx6+uYqH5qhZxg654TJntI9fX1I0aMsH9l6NChhBCDwcBzSXBkjgMEhE70NBmPKtI1piewMQimVspSR6lwAqQDJhPSiBEjioqK7E/OLywslMvlUVFRPJcER+Y4QEDoRE+T8ajckjqGOhwpMSqM2jlgcsju4Ycf/vLLL2fOnDl16tSgoKCjR4/u2bMnNjb273//OyHE399/+vTp/JQEa50dICB0oqfJeE5afmVqjIo7xYoJXGPJLamjfxUGb5hMSF9//bXVaj158uTbb79te/HQoUOHDh0ihPj5+fHZulJiVJn7ajQL8Pf3FgSEQlQ1GQ/JLamrWTFW6FJ0T3piJJdHhS4ILZhMSOvXr3/nnXeELsUt2FLgAAGhEFVNxhO41d4MdY84mmgFOkn2mJxD8vb29rHT1tbm83N8FgbPS3WAgFCIqibjCRmFNawsZ3CQnhiJGzgbJhNSe3v7li1bPvjgA0LIm2+++cADD4wbN+7AgQNClYcbpBLq6hRCQGhDW5NxL0a7Rxyuk4QbOA6TCemTTz7JzMysr68/efJkTk7OmDFjhgwZsnz5cvtFRHzSRCuwtMweAkIb2pqMe7HbPeJwM0lCl4IKTCakf/zjH5MnT16xYkVRUVFQUFBWVtZbb73V2Nh45swZQcqDQSoHCAhtaGsybpSWX5mREMlo94hjm0kSuiDCYzIhNTY2Dh8+nBBSXFz80EMPBQYGBgUFEULMZsGeVI9BKgcICFUobDJuodUZc0vqRHAiXE7ScMwkEUYTUkREhFar1Wq1hw4dGjduHCFk165d3t7eAwYMEKpIGKRygIBQhcIm4xaZ+2pykoYJXQo3UCtlmmgFBu6YTEgpKSlHjx6dP39+aGjotGnTcnJyVq9ePXXq1D59+ghVJNseN6EKQBsEhCoUNpne42qXaBZMpydEanVGiQ90M7kPacyYMXv27Kmurh4zZsydd945YsSIdevWPf7448KWKj0xkomj73mDgNCDzibTS5mFIukecdRKWXpCpMQ3lbOUkLjnMc+YMePIkSNnz54lhOzevdv20y1btgj7PGa1Qq7VNeLUHBsERHCUN5neSMuv1EQrRFa1NNGKvJI6KTcZlhLSwYMHc3Jyxo8fv2vXrm+++cb5DcI+j1mtlKXGqPDwBRsERHCUN5ke44a2mDso6LbUSllO0vAJm8rE90/rIpYS0pIlS5YsWUIIWb9+/fr164UuTgfSEyInbCoTwZofd0FAhEV/k+kZ0axlcMY9liItv1Ks/0DXmFzUQC3sv3GAgIDbZe6rUSvlIu52p8So9AazNFsNSz2k999/f+vWrS7esGvXrtDQUN7K0yGcde0AAREQE02mW7Q6Y0ZhTfs7cUIXxIPUShl3doMEB+5YSkj3338/t4/PZDJt2bJFoVAkJCTccccd//3vf0tLS8eOHRsQECB0GXHWtSMEREBMNJluydxXc3DBSKFL4XHceo3MfTVSG+5mKSH96le/+tWvfkUIefvttwcOHLht27aQkBDuR++///4nn3zi5+cnaAEJwUO3nCAgAmKiyXQdd/aHiAfr7KUnRKblV4zXhUrk38thcg7pP//5z6RJk2xNixDy1FNPNTY2nj59usef2dLS8uWXX65Zs+Yvf/nLpUuXelO89MTIPPY3hCIgYkJ5k+kKrc6YW1p3cMGDnr5Qb7gxJmqlLCVGJbWzG5hMSCEhIZcvX7Z/5fz584SQwMDAnn2g1Wp95plnNmzYYDKZvvrqq8cff1yv1/e4eGqFXG+0MD0niYCIDOVNpivoX1nn9pikxqi4gTs3FZABTCakcePG7dq1a+PGjRcvXrx27ZpWq12yZMmgQYMGDhzYsw88cODA8ePHP/vssz/+8Y87duwIDg52PRXsGrdwM6/E4/eMnoOAiAzlTea2Jmwso39lnSdiIrXzhFiaQ7KZN2/eiRMn/vznP//5z3/mXhkwYEB2dnaPP7ChoWHUqFFRUVGEELlcrlKpjMZe1YCUGNWETWW9+QRhISAiQ3+TcUGrM+qNFsoH64hnYiK1FXdMJiQfHx9bu3KLpKSkpKQk7uvS0tJjx47Nnj3b+W3FxcVZWVmEkBkzZoSHh7v4QHfN5BcXFx8+fJj7IjY2tjcf1S0IiMjQ32RcmLDxaNdX1glYQzwUE27FXY+3yrLVZJgcsvMQ7jHP8+bNmzRp0tSpU128s7a29raf5paZ/B63YbdAQMA199aQDk3YWJaRENn1wTrBa4gnYtKbgTvBA9ItTPaQPOHKlSuvvvpqZWXlsmXLkpKSvLy8nN8TGxu7aNGiLn6gbSa/NwPf4eHh3BW5Wyo+ISDgmttriDPuARPd2osjbA3xUEzUSllO0rCeDdyx1WSQkAghxGw2P/PMM3fdddfXX3/dt29ft3ymbSaf8pnYDiEg4JonaogDvcHC1tyJR2OiiVZI4Yw7JCRCCPnb3/529erVDRs2NDc3Nzc3E0JCQkLCwsJ6+bHszuQjIOCah2qIvbT8ioMLRqqVzBxG7umYpMSo0vIrxL3HHAmJEEKOHDliMpmmT59ue2XOnDkrVqzo5ceye0gBAgKueaiG2LB4KIOnY2J7OIUmWsFQnu4WJCRCPDm6yi3ZZO7vLwICrnl0QoI7lIGhwToOD5M03FNl0/Ir6F8E3zNYZedZaoUcz1+wh4DAbYl+pqQ3uF6jWI9vQELyLLVSpolW4JACGwQEXJuwsSx1lIqtwTo+cQN3uaV1eoNF6LK4HxKSx6XEqNAhsIeAQGe4iiG1Zy50l23gTuiCuB8SksfZZvKFLggtEBDokN5gmbDxKLJRV3CzsOIbuENC4kN6YiQeUmcPAQFnafkVOUnDMFjXRdzAncgGG5CQ+KCJVmAm3x4CAg64m30sv+y6HwfuRPXAJCQknqTEqMTXv+4NBARs9AZLRmFNTtJwoQvCmNQYlVohE1M7QkLiiSZaoTdaRLkwpmcQELBh7lAGeohs4A4JiSc/LnfGTP4tCAhwWDyUgR7cwJ1oOklISPxJT4jMLcXf358gIIDBut7jJt7EsWwVCYk/3HJn0XSuew8BAW5lHQbreiknaXhmYY0IBsCRkHiFmXwHCIiUcTf1WFnXe6LZKouExCtNtEKra0SfwAYBkbK0/Epsg3UXbhKO9aaEhMQrtVKWGqPCSW42CIhkcYe+Yy2Du6iVMu4ofaEL0itISHxLT4hk/S7GvRAQCdLqjLkldTjS2724/eZMr25AQuIbZvIdICASlLmv5uCCkUKXQoS41Q1Cl6LnkJAEgJl8BwiIpHC38Bis8wRuex+7A3dISALATL4DBERSMgtrsJbBc7gxcEZbExKSADCT7wABkY7ckjpNtALdI8/hloAz2pqQkISBmXwHCIhEZBbWpMT0F7oUIqeJVjDaSUJCEgZm8h0gIFKA7hE/2O0kISEJBjP5DhAQ0UP3iDdcJ4m5w4SQkASDmXwHCIi4oXvEJ265HXNLwJGQBMPN5BedbhS6ILRAQMQts7AmPQGL6/jD4rwsEpKQ8PwFBwiIWOWW1KkVMpzqzSduXpatgxuQkISEmXwHCIhY5ZXUpeBUb96lJ0ayNWqHhCQwzOQ7QEBESatrxGMm+KdWyAlTR4AjIQlME63QGxlbCeNRCIj4ZO6rQTYShFopSx3F0pZzJCSBsTjO61EIiPjkltZhtbdQUmJU6CFBN6QnRubh768dBERMckvq9AYLVnsLha15WSQk4akVcuy/sYeAiAzG64SliVawspsCCUl4aqUsIyGSlRrDAwRETPJK6sZHhwpdCkkbPziUlds7JCQqjB8civ039hAQ0dDqGjFeJyy1Qs7KQiEkJCpwzx5m5S6GBwiIOOSVXkqNUWE/rLC4aaQiHQNDDkhItNBEKxhanckDBEQETpkD1QpkI+GxspsCCYkWbK3O5AECIg6D0D2iwPjBoRVeEUKX4vaQkGjB1upMHiAgImAOG4oJJBqoFfKb8jChS3F7SEgUwSCVAwSEda2BYZhAokRrIBISdAcGqRwgIEy7ycJfQIlQK2VqpYz+/xEkJIpgkMoBAsI0U9hQDXYgUUOtkLVSP2qHhEQXDFI5QECYplbKhS4C3KJWyukftUNCogsGqRwgIADSgYREFwxSOUBAAKQDCYk6DJ2EyA8EBEAikJCog2PcHCAgABKBhEQdtUKuN1gwSGWDgABIhK/QBeBJS0vLrl27qqur+/Tp88QTT/Tv7/j8yrKysvLyctu3cXFxgwYN4reMt6iVMk10aNFpz56RjICAa26pIXqD2eMF5RFDrYZRkughWa3WZ555ZsOGDSaT6auvvnr88cf1er3De7Zs2fLFF198/6MrV64IUdJb0hMjPdohQEDANbfUED9TA0/F5QVzrcYBEy1IEj2kAwcOHD9+vKCgICoqymw2T5w4cevWrUuWLLF/T1VV1fz582fOnClUIe15+vklCAi45pYa4mdu0BuDPV9YnjDXapwFNlQTMkroUrgiiR5SQ0PDqFGjoqKiCCFyuVylUhmNP7tZaG1tPXPmTGho6N69ew8dOtTa2ipQSW/x9FpnBARcc0sN8TU16A0WvUEkdxLMtRoHeoPFl/o+qyR6SElJSUlJSdzXpaWlx44dmz17tv0bdDqd1Wp9+eWXw8PDL1y4EBER8emnn/bp08fhc4qLi7OysgghM2bMCA8P92iZubXOgQ2nDh8+zF06NjbWXR+OgIBr7qoh8obqdz/SD5Zd56GGcIqLiz1UQ1hsNeTHgJy2BPmZGOitSqKHxGlvb9+yZcu8efMmTZo0depU+x/dvHlz2rRpe/fu/eabbwoKCoxGY3Z2touPqq2t9XBhyfjBoVqd0aP1FQEB19xSQ7jjanioIRxP1xC2Wg35MSB6o0XeUM3D5XqrXRouX778zDPPPPTQQ1u2bGlra3P95tWrV0+fPt3hxffee++9997zWAEd1TSY1Wv+7bmrIyDgmltqSNiUVzK+OeOxMrriiRrCXKuxyfjmTNiUV+hvMpLoIZnN5meeeYYQ8vXXX8+ePdvLy8vhDV9++eXbb79t+7a5udnPz4/XIjrx6KwJAgKuuauGaKIVotnUzGKrscktrWPioFtJJKS//e1vV69eXb58eXNzc01NTU1NTUNDAyFkxYoVn3/+OSEkJCTk448/3rFjx/Xr1w8cOFBQUJCQkCB0qT14ZA4CAq65q4aolTLRbGpmtNVw9AZLyijHXVMUksSihiNHjphMpunTp9temTNnzooVK3bv3m0ymZKTkydOnFhRUZGenr58+fKAgIDk5OTU1FThynvL+MGhmftq0kmk2z8ZAQHX3FVDBilkmj6heoOFRPNXeA9htNUQQnJL6lJjVOTqCaELcnuSSEjcmhZnx48ft329ePHil156yWAwhIWF+fj48FU0Vzy3+QYBAdfcWENSYlR53B9ExjHaagghRbrG8dGhP1wVuhxdIIkhuy7y9fXt168fPdVI8FkTBARc60oN0UQrJHUbQVurIYRodUZWjt1CQqKaWinHrIk9BIQ5uI0QllZn1BssaqVM6IJ0CRIS1dCSHSAgLEqJUWXuqxG6FBKVV3IpI4GZaVckJKqNHxwqqeGO20JAWMSN2onmDCG25JbUpbAzgYeERDW1goGtA3xCQFikVso00Yq8EpFsSGIIt76OlfE6goREOYy/O0BAGJWeECmaHbIMySupGx8dKnQpugEJiQEY63CAgDAHdxL80+qMWl0jWwvukZBop4lWnMXfXzsICKOwtIFnbC1n4CAh0Y475VroUlAEAWEUtxUG/3f80BssuSV16YlISOBWOJ7AAQLCKLVSlhKjSsuvFLogkpBZWMNc94ggIdGPO55S6FJQBAFhV2qMCjNJPGC0e0SQkJigiQ4t0uF4gp8gIOxKT4xEJ8nTGO0eESQkAOCTJlqBTpJHcc/7YLF7RJCQmKBWytGA7SEgTEMnyaPS8ivS2eweESQkJqgVzGy05gcCwjRNtEITrUBO8gStzqg3Wtjae2QPCYkB4weHmsKGCl0KiiAgrEtPiOROoRa6IGKTua8mJ2mY0KXoOSQkNtyUhwldBLogIExTK2XpCZFp+RVCF0RUckvqyI/7vRiFhMQAtULua24QuhQUQUBEAPtk3S4tvzInabjQpegVJCQGqJUyM0ao7CAgIqBWyrC6wY0mbCzLSIhk6GDvDiEhMeNmIAapfgYBYR1WN7gLt5aB0aXe9pCQ2MD6jY/bISDikJ4QqTeYMXDXS2n5lUyvZbBBQmKDWiFrxTS+HQREHDBw13tp+ZVcX1PogrgBEhIACAkDd72h1Rm1OqM4ukcECQkABIeBux5jfeORAyQkNqiV8lbM4dtBQMQEA3c9wz3wUByDdRwkJAAQniZakToKT0vqBq3OmFtad3DBg0IXxJ2QkNigVshwNoE9BER8UmJU3IyI0AVhg8gG6zhISABABbVSdvDFB9PyK3HG3W1l7qt5CRvhAAALlElEQVRRK+ViGqzjICGxQW+04LAcewiIKKmVstRRqszCGqELQjVusE583SOChAQAVEmJUekNZu6cUOiQaLbBOkNCAgCKqJWynKThmYU1GLjr0ISNZamjVOIbrOMgIQEAXbiHU0zYVCZ0QagjmjPrOoOEBADUSY1RaaIV3D4bsJmw8ahYB+s4SEgAQCPuqbJYBW7DPWBCrIN1HCQkAKARjm+wx63yEPFgHQcJCQAoheMbOHqDRQRPg+0KJCQ26A1mPxO23fwEAZEIrAInhKTlVxxcMFIKzwBDQgIAemEVuPhOUHUBCYkNeqPFDwcT2EFApINbBZ6WXyF0QQSgN1gyCmukMFjHQUICANqlxqjIj30FSZHOYB0HCYkNeoPFF1MmdhAQqclJGp5bWiepVeCSGqzjICExQLKj551BQCTox4E7qay40+qMGYU1Invc0W0hITFAbzTLG6qFLgVFEBBpktTxDZn7ag4uGCl0KfiGhMQAvcGCJc72EBDJksjxDRIcrOMgIQEAM9RKWUqMyLfKSm1lnT0kJAYU6RqHyE1Cl4IiCIiUpcao1AqZiAfu0vIrcpKGSWdlnT1foQtAC7PZvG3btpqamrvuumv69On9+vUTukQCQ0DANQFrSE7S8AmbysYPDqVtUKv3MeHOpOCWuUsQekiEEGK1Wn/zm998+OGHzc3NX3zxxdSpU69evereS9TW1hYXF/fsd7U6oyY61L3lcQ0BAdeErSHcijvaOkluiUlafqWLE1R37tzZuzLSDgmJEEKKiopOnTqVn5+/du3azz//vKmp6eDBg+69xI4dOw4fPtyz39UbLIMUvPbfERBwTfAawvWNqDrjrvcxScuvdP2AiWXLlvW6mFRDQiKEkKCgoOeff16lUhFC5HK5t7d3cHCw0IW6RZA9NwgIuCZ4DbGdccfnRV3rZUy0OmNuSZ3oHzDhGuaQCCFk9OjRo0ePNhgM77///sGDB8eOHRsXF+f8tuLi4qysrJ5dght86MGvn7YEDWv3Li4ujo2N7dmlewABAdcoqSHyhuDHV5+fFHqlw1/nuYb0Mia7W4ZNDajOyjrh+iq9iSf9TcYnIyND6DLQ4vr168eOHTOZTKdPnx45cmR4eLj9T0ePHl1bW9vjDw8PD3f4wC5S+rbGKFrCw8MXLVrU46v3DAICrgleQ0aGB9/jU9/ZrwtSQ3ock+jg9sGy664/vDcZhYkm49Xe3i50GYRnNpsJIXK5nPt27ty5/v7+f/nLXwQtlJAQEHANNcQZYtJ7mEMihJA33ngjKSnJ9m10dHRv7uxEAAEB11BDnCEmvYeERAghsbGxVVVVH374YX19/b///e9du3Y9/PDDQhdKSAgIuIYa4gwx6T0M2d3y9ttv5+Xltba2ent7T548efXq1bautzQhIOAaaogzxKSXkJB+YrVa6+vrFQqFv7+/0GWhAgICrqGGOENMegMJCQAAqIA5JAAAoAISUrdVVFR0a2+a1Wrdvn37mjVrNm7ceP78eX4uyicEBFxDDXHGf0woDwgHQ3bdU19f/9vf/ra5uXnPnj1d/JUXX3zx+++/j4+Pr6qqOnfu3I4dO6Kiojx9Ud4gIOAaaogz/mNCeUBscHRQN8yYMaOqqspqtQ4ZMqSLv3LixIkDBw5s2rQpLi6upaVlypQpH3300RtvvOHRi/IGAQHXUEOc8R8TygNiDwmpG1avXt3S0rJ79+7S0tIu/kp5eblcLtdoNIQQf3//uLi47777ztMX5Q0CAq6hhjjjPyaUB8Qe5pC64d5773U+nMo1g8HQr18/b+9bce7fv7/BYPD0RXmDgIBrqCHO+I8J5QGxhx5Sp86cOWO7oRgyZMjIkSN78CFtbW3233p7e1utVjcUTggICLiGGuIMMekWJKROnTx58pNPPuG+njRpUs9qUkBAgMlksn3b3Nwsk7H6ZDkEBFxDDXGGmHQLElKnJk2aNGnSpF5+SERExNWrV+vr6/v06UMIqaysjIiIcEfpBICAgGuoIc4Qk27BHJJnjR07NjAwcNWqVbW1tXv27Nm/f398fLzQhRISAgKuoYY4k05M0EPqCS8vry6+MzQ0dO3atStXroyLi+POW0xOTvb0RfmHgIBrqCHO+I8J5QEh2BjLj/b29vr6+uDgYLGO/HYXAgKuoYY4k0JMkJAAAIAKmEMCAAAqICEBAAAVkJAAAIAKSEgAAEAFJCQAAKACEhIAAFABCalLrFbrzZs3ua8tFsuSJUv++9//uvcSRUVFM2fOdF6F39jY+Oijj549e9a9l+slBARcQw1xhpjcFhJSlyxZsiQ1NZX7+saNG7t377548aIbP7+tre2dd96Jj4933kodGho6bNiwN998042X6z0EBFxDDXGGmNwWElKX2B//HhISUlZWlpiY6MbPLygoOHfu3OzZszv8aWpq6oEDB6qrq914xV5CQMA11BBniMltISHd3nPPPXf48OGqqqpnn332xIkTZrP5hRdeKCkpuXTp0rPPPvvtt9+++OKL48ePT0lJOX/+fG5u7rRp0zQazdKlS7kT42/cuLFu3bopU6ZMnDgxIyPj2rVrzpf46KOPfv3rX995552EkO3bt8+YMWPs2LFTpkz54IMPCCGjRo0aOnToF198wfM/vDMICLiGGuIMMekKJKTbGzlypEKhkMvlDz30kEKhaG1tLS4ubmhouHHjRnFx8cKFCwcMGDBv3ryTJ09Onz49Nzc3Li7u8ccf/+qrrz7++GNCyIIFC7Zu3Tp16tRZs2b94x//SE1NdXi41s2bN6urq3/xi18QQr7//vvXXnstOjp6yZIlv/zlL9evX79z505CyPDhw//1r38J8s93hoCAa6ghzhCTrsBp37e3cOHCU6dO1dfXv/zyy4SQpqYm+5/OnTv3lVdeIYTU19d/8MEH77///ujRowkh3377bU1NzaFDh7777rtPP/00NjaWEDJmzJiZM2cWFRXFxcXZPqGmpsZqtQ4YMIAQotfrCSEzZ84cM2bM9OnTQ0NDueHg8PDwXbt2Xbt2LSQkhLd/eGcQEHANNcQZYtIVSEi9FRMTw31x5513+vv7czWG+7atre348eOEkJycnNzcXNuvHD161L4m6XQ6Qgj3xPsJEyZs3LgxLS3t/vvvj4mJefTRRx988EFCCFfPGhoaqK1JNggIuIYa4gwx4WDIrrfsF7R4e3s7rG+xWCxeXl79+/e/60e/+c1v7rnnHvv3tLa2EkK4lZp33XVXQUHBmjVrIiIitm/fPnv27LVr1xJCfHx8CCG+vgzcQCAg4BpqiDPEhENvycRhyJAh7e3tc+bMiYyMJIRcv359w4YN3F2MTVhYGCHk/PnzQ4YM+eabb/R6/QsvvDBz5syWlpa5c+du27Zt6dKltbW1crnc4RdZhICAa6ghzqQTE/SQusTf37+2tvbbb791GPm9rbi4uLvvvvvll1/+/vvvjx49unLlyj179gwePNj+PcOHD/f29r5w4QIhpKmpacOGDTk5OefPn6+qqjIajVwv+8KFC1FRUd7etPx/ISDgGmqIM8TktugtGVUeffTR5ubm559/vrKyknvF1q22/9916Hd7e3sHBARs3rzZx8cnNTU1KSmptrb2jTfeCA4Otv/w0NDQ++67r6qqihAya9asWbNmrVu37rHHHnvyyScJIW+88QYhpKqqatiwYZ7/h3YVAgKuoYY4Q0xurx148cMPPzQ0NHT20+3bt99///0Gg4H71mQynT9/vr6+nvu2rKzsF7/4xalTp/goKF8QEHANNcSZ6GOCHhJP7rjjDqVS2dlPp0yZ0qdPH9ueNblcPmDAAG5QmBCSk5Mzbdo0hx466xAQcA01xJnoY4KERAV/f//XXnvtwIED7R2dilhRUfHSSy8JUjChICDgGmqIMxHExMu56AAAAPxDDwkAAKiAhAQAAFRAQgIAACogIQEAABWQkAAAgAr/D5k/2Hl9a7JpAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "clear all; clc\n", + "\n", + "% this is the integration for the system in the first mode\n", + "[t, X] = ode45('masses', [0 3], [1.0 0.0 1.0 0.0]);\n", + "subplot(1,5,1)\n", + "plot(X(:,1), t); \n", + "ylabel('displacement (m)'); xlabel('time (s)')\n", + "set (gca, 'ydir', 'reverse' )\n", + "%box off; set(gca,'Visible','off')\n", + "\n", + "subplot(1,5,2)\n", + "plot(X(:,3), t); xlabel('time (s)')\n", + "set (gca, 'ydir', 'reverse' )\n", + "text(-4,-0.2, 'First mode')\n", + "\n", + "% this is the integration for the system in the second mode\n", + "[t, X] = ode45('masses', [0 3], [1.0 0.0 -1.0 0.0]);\n", + "subplot(1,5,4)\n", + "plot(X(:,1), t);\n", + "ylabel('displacement (m)'); xlabel('time (s)')\n", + "set (gca, 'ydir', 'reverse' )\n", + "%box off; set(gca,'Visible','off')\n", + "\n", + "subplot(1,5,5)\n", + "plot(X(:,3), t); xlabel('time (s)')\n", + "set (gca, 'ydir', 'reverse' )\n", + "text(-4,-0.2, 'Second mode')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This shows that we get either of the pure modes of motion with the appropriate initial conditions.\n", + "\n", + "What about if the initial conditions *don't* match either set of amplitude patterns?" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 56, "metadata": {}, - "outputs": [], - "source": [] + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGkCAIAAACgjIjwAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAAB3RJTUUH5AIbBgw4POP76gAAACR0RVh0U29mdHdhcmUATUFUTEFCLCBUaGUgTWF0aFdvcmtzLCBJbmMuPFjdGAAAACJ0RVh0Q3JlYXRpb24gVGltZQAyNi1GZWItMjAyMCAyMjoxMjo1NmYPncYAACAASURBVHic7d1fbBTX3f/xsfm3SwXyromDtfLPazZBpXEvUsWOynPBYsUGCoTg6Kc6MYqhoYoSxREKjVTqSI6haStQ1EimTZU2xJRCCYkcwoOdgBJjLqqEXfAjQ2O7aRcv+WE5CmaX6jG2i9n4dzF0a/xnba9n5pwz835d7eLdma9PJH9y/sw5GSMjIxoAAKJlii4AAABNI5AAAJIgkAAAUiCQAABSIJAAAFIgkAAAUiCQAABSIJAAAFIgkAAAUiCQAABSIJAAAFIgkAAAUiCQAABSIJAAAFIgkAAAUiCQAABSIJAAAFIgkAAAUiCQAABSIJAAAFIgkAAAUiCQAABSIJAAAFIgkAAAUiCQAABSIJAAAFKYK7oAwyQSiePHj3d2dnq93o0bN+bl5YmuSDAaBIBaMkZGRkTXYIxnn332s88+Ky0t7erq+vLLLxsbG5ctWya6KJFoEABqscmQ3eeff97S0vLaa6/t3bv3vffey8nJeeutt0QXJRINAkA5Ngmk9vZ2t9sdDAY1TZs/f35JSUl7e7vookSiQQAoxyZzSLFYLCcnJzPzTr4uXbo0FouN/1h9fb21dRmpurp6+h+mQQAoxyY9pG+++Wb028zMzEQiMeYz9fX1oVAojYuHQqH0vtjT0/P+++9P9tM3uhd1Zv6fyX66f//+MTXMKDxMbZDxUv+mMzXmd5/Qhzdy6k51G3VHADKwSQ9pwYIFAwMDybf9/f0ul2v8x4qLi9P43+r333//3LlzaXwxFAr19PRM9sW2o53FgaytRZvG/0j/+z76izPtypjaIOOl/k1nZPzvPqEYaQTYjk16SHl5edeuXevr69PfdnZ2OnyVs+0bJBofmjt4XXQVAIxkk0BauXLlwoULd+/e3dPTc/LkyY8//ri0tNSoixcXF5eXl6fxRZ/Pl3an4Ve/+lV6X9SZ2iDjzeY3HW+WvzsARdlkyC4rK2vv3r0vv/xySUlJZmbm+vXrKysrjbq4z+fz+XxKfDHJ1AYZb/YFz/RSrZH4ioL/NeSOACRhk0DSNK20tPSRRx7p6+tbtGjRhPMlTmP7BpnHkB1gL/YJJE3TMjIy7rnnHtFVSMTGDRKNDc1dTCABtmKTOSQV+T2uK7Eh0VUoqTUSd1//QnQVAAxGIEE90djQvAG6R4DdEEhQz9nIjfvdA1N/DoBSCCSopzUSDwayRFcBwGAEkjD5Xlc0zhxSmvI9Nlw3CDgcgQTFNIR7gwGP6CoAGI9AEikaGxRdgnoOhntXMV4H2BGBJIzfy6BTOlojN7YW5YquAoDxCCSopCHcSxoBdkUgCeP3uFnUMFN1p7uripaKrgKAKQgkKKM1Eo/GhljRANgVgQRlHAx/9UpZgegqAJiFQBLG73VF2ctuJhrCvVVMIAH2RSBBDduOdm4tymVpImBjBJJIdJKmryHcW8t4HWBrBJJg0TjPxk6t7lQ33SPA9mx1QJ9y/GzINj2vnO7urlkpugoA5qKHBNkxewQ4BD0kkfxedzQ2pAVE1yGxaGyoIdw78lqJ6EIAmI4ekkicYj6lbUc73q5YIboKAFYgkCCv1kg8Gh9i8zrAIQgkwdjOLoVtRzvpHgHOQSCJlM9E/eTqTnUHAx52rgOcg0ASye91cUbfhFoj8VdOd9M9AhyFQIKM6k51n3nuQdFVALAUgSQSRyJNqO5Ut6ZpDNYBTsNzSJCLPljHg0eAA9FDEonNVcdjsA5wLAIJEqk71e33uhmsA5yJQBKMTlJSayTecL6XlXWAYzGHBClEY0Orf/s/DNYBTkYPSTC/x8WRSJqmbTvacea5BxmsA5yMQIJ4rPMGoBFIMnD4HJI+dXTmue+JLgSAYMwhCeb3ukWXIBJTRwCS6CFBJKaOACQRSII5+Yy+1b9tYz9vAEkEEsTQFzLUrikQXQgAWTCHBAH0hQzdNStFFwJAIgQSrMZCBgATYshOsHyvy2knULCQAcCECCRYioUMACZDIME62452aixkADAJAgkWaY3Eo7FBdmQAMBkWNcAKrZH4tqOdLKsDkIIygZRIJI4fP97Z2en1ejdu3JiXlzfmA21tbe3t7cm3JSUl+fn51tZoKYUahGV1AKZDmUB6/vnnP/vss9LS0lAo9OabbzY2Ni5btmz0B44cOXLx4sWCgjvzE4WFhfYOJIUahGV1AKZDjUD6/PPPW1pa3njjjZKSklu3bm3YsOGtt9569dVXR3+mq6vrmWeeefzxx0UVaSWFGoRldQCmSY1FDe3t7W63OxgMapo2f/78kpKS0YNRmqYNDw9fvnw5Kyurubn5008/HR4eFlOoVVRpkNW/bdNYVgdgetToIcVisZycnMzMO/G5dOnSWCw2+gORSCSRSOzYscPn8129ejUvL+/QoUNLliwZc51QKFRfX69pWnl5uc/ns6b42QiFQufOndNfFBcXJ/9diQbRd6szdlndZA0CwAbU6CF98803o99mZmYmEonR/3L79u1NmzY1Nzd/9NFHTU1N8Xh8//79KS7Y09NjSqEzdyU25Pe4JvvpZCEhf4OYdOyeEv8bASA9avSQFixYMDAwkHzb39/vct31R7ywsHDv3r366/z8/A0bNrS1tY2/TnFxcXV1tamlGsvn8+kF6/2YJMkbxLxldZM1CAAbUKOHlJeXd+3atb6+Pv1tZ2fnmFXOx44d27dvX/Jtf3//vHnzLC3RWjI3SDQ2tPqNNpbVAZgpNQJp5cqVCxcu3L17d09Pz8mTJz/++OPS0lJN02pqag4fPqxp2uLFiw8cONDY2Hjz5s2WlpampqaysjLRVU9LND6U7510yG4yMjfItqMdtWUFpBGAmVJjyC4rK2vv3r0vv/xySUlJZmbm+vXrKysrNU07ceLEwMBAZWXl2rVrOzo6amtrd+3atWDBgsrKyq1bt4qu2kTSNsjq37b5ve6tRbkW3AuAzagRSJqmlZaWPvLII319fYsWLUrOl1y6dCn5gRdffPGFF16IxWLZ2dlz5swRVOaMRWODVUVL0/iihA2iL6t7u2KFBfcCYD/KBJKmaRkZGffcc0+KD8ydOzcnJ8eyegwRjQ/5Pe70vitVg3AILIBZUimQIC12qwMwe2osarCxaGzIP/NFDbJhtzoAs0cgiWSPNGK3OgCGIJBEao3EU2zToAR9IQO71QGYPeaQBPN701zRIAMWMgAwEIEkUuqN7CTHQgYAxmLITqT0tmmQBAsZABiLQBKpNRJX9A86CxkAGI5AEknRVXatkbjGQgYARmMOSZhobEh0CelojcRX//Z/WMgAwHD0kIRpjcRV3IS07lT3meceVLFjB0ByBJIwVxTsITF1BMA8BJIw0fjQqkCW6CpmgKkjAKYikIRpCPcq1NXQnzoijQCYh0ASQ+9tKDQTs+1oxyucAwvATASSGNHYkEIrGhrCvRqDdQBMxrJvMc5GbqgygRSNDW072sk6bwBmo4ckhkJ7NGw72vF2xQqFRhcBKIpAEkOVPRr0wTqFRhcBqIshOwEawr2q/InfdrST/bwBWIMekgAHw71KTCBtO9q5tShXlaFFAKojkARojdyQv4fUGok3hHvfrlghuhAATkEgWU2V8Tp9zzrRVQBwEALJakos+NbXMjBYB8BKBJLVlFjwXXe6m8dgAViMQLKUvn+d5Au+9SLlT00ANkMgWUqJ8bq6091VRUtFVwHAcQgkS8m/wzfdIwCiEEjW0dfXST5eR/cIgCgEknXkfx6W7hEAgQgk68j/PCzdIwACEUgWqTvVLXka8ewRALEIJIs0nO+VvPNxNnKjtoxnjwAIQyBZoSHc6/e4JO98qLKnEQC7IpCscDDcWyX333rSCIBwBJIVWM4AAFMikEynnyokuopUGsK90diQ5COKAGyPE2NN1xDu7a5ZKbqKVM5K34ED4AT0kMylxO4MrZE443UAhCOQzKXE3AzjdQBkQCCZiNXeADB9BJKJDoZ75T/mTokTMQA4AYFkloZwbzSuwFCY/CdiAHAIAsksB8O9quzEI/maCwAOQSCZojUSj8aH5J+bOXj+K/mLBOAQdgukjo6O+vp60VVodae6JekepW6QaGzQymIAIAVbBVJfX9/u3btPnToltgx5ukdTNsiwO5sVDQAkYZ+dGsrLy7u6uhKJxP333y+2Ekm6R9NpkMHs5axoACAJ+wTSnj17bt26deLEifPnzwssQ57u0XQaZHhhtpUlAUAK9gmkBx54QNO0CxcupPj7GwqF9AmV8vJyn89nRhnGdo9CodC5c+f0F8XFxTP67pQNcnthtqZp/33495qZDWKs2TQIAMnZag5p+np6esy4rOHdI7NDYt7Adf2FSQ1iOCVSE0B67NNDmo7i4uLq6mrzrm/47JHP59MLNmPp4LA7+7++e0/1c//X8Cubx9QGASCWswLJVA3hXk3TZJg9mqbhhdn+TLfoKgDgDocO2ZlBiZ3rAEBaNgykjIwM62+qd4/kXEItpEEAYKbsFkjbt28/ceKE9fetO90tZ/coRYPcdmf7PexiB0AWdgskIZQ49wgAJMeiBgPUne5+u2KF6CoAQG0E0mzp5wmp2D2aO3j9H0PfEl0FANzBkN1s1Z3uripaKroKAFAePaRZqTvVrWj3SNO0eQPXozf4PxIAsiCQZuWV093dNStFVwEAdsD/IKdv29HOrUW5nP8NAIagh5S+hnCv0t2jeYPXo/FFoqsAgDvoIaXJBt2juQPXo7Eh0VUAwB0EUjqisaGGcK8Nnj2aN3C9NRIXXQUAaBqBlJ66092vSHBI+ezNHbwuugQAuINAmrHWSLzBLht7zxu4fvYfN0RXAQCaRiCloe6UfTYKmkcPCYA0CKSZaY3EWyM3FDqFL7VgwMMcEgBJEEgzY6fukaZpfq8rGmehHQApEEgzYLPukaZp+R6Xpml0kgDIgECaAZt1j3Sc0QdAEgTSdNmve6QLBjwstAMgAwJpug6Gv7LHs0djrLoviyE7ADJgL7vpagj3jrxWIroK4/k9btY1AJABPaRp0XeuE12FKfxel9/jopMEQDgCaVoawr21dhyv0zGNBEAGBNLUGsK9qm/snRrTSABkQCBNre50d1XRUtFVmIhpJAAyIJCm0BDuDQY8wYBHdCEmYhoJgAwIpCkcDPfau3ukYxoJgHAEUir6w7D27h7pVt2X1XC+V3QVAByNQErFrg/Djuf3uKOxIU40ByAQgZRKQ7i3yqaPH43h97qCgaxofFB0IQCci0CalO1Xe49RVZRbd6pbdBUAnItAmpRDljMkBQMeFn8DEIhAmpRDljMksfgbgFgE0sT08TrRVVgtGPAcDH8lugoADkUgTcz2uzNMqKoolx4SAFEIpIlFY0OOGq/TMWoHQCACaQLOHK/TsWUDAFEIpAnUne5eFcgSXYUYbNkAQBQCaQLR2JBje0j6lg2M2gGwHoE0lpPH67R/b9nAqB0A6xFIY52NOP1vce2aAnpIAKxHII3VGok7cMH3aH6PuzVyg0wCYDECaSxnLvge7c5Gq+z8DcBaBNJdGsK9Qaeurxutdk3BwTBr7QBYikAay+91iy5BPL/HzUarACxGIN3lbOSGY59AGo0tGwBYj0C6C3+CkzgeCYDF5oouYGY6Ojo++eST6urq8T9qa2trb29Pvi0pKcnPz0/jFmqtaDCvQYIBT91pAgmAdVQKpL6+vt27d/f390/49/fIkSMXL14sKCjQ3xYWFqYRSNHYkEJHxJraIMlRO7USGoC6lAmk8vLyrq6uRCJx//33T/iBrq6uZ5555vHHH0/7Fq2RuEJL7CxoEP14JAIJgDWUCaQ9e/bcunXrxIkT58+fH//T4eHhy5cvZ2VlNTc3ezyehx56aN68edYXaSULGqSqKHf1G21GFAsAU1MmkB544AFN0y5cuDDh399IJJJIJHbs2OHz+a5evZqXl3fo0KElS5aM+VgoFKqvr9c0rby83OfzjflpNDYk25rvUCh07tw5/UVxcfHoH1nQIBKO2qVoEACqs8kqu9u3b2/atKm5ufmjjz5qamqKx+P79+9P8fmenh7LapuN8SExTUY1iGzHI6XdIADkp0wPKbXCwsK9e/fqr/Pz8zds2NDWNsFYU3Fx8YTz/7or8m2W4/P59IL1fsz0GdIgmqatui+r7lR3rVYwo7ubJ+0GASA/m/SQjh07tm/fvuTb/v7+9OaQ/B5lltilZlyDuFsjN9jXDoAF1A6kmpqaw4cPa5q2ePHiAwcONDY23rx5s6WlpampqaysbKZXi8aH8tVZ8z0hYxtE+/dGqzwvDMAC6g3ZZWRkJF+fOHFiYGCgsrJy7dq1HR0dtbW1u3btWrBgQWVl5datW2d6Zb/HJeGo3ZTMaxBdVVHuQWcfWgjAGooF0vbt27dv3558e+nSpeTrF1988YUXXojFYtnZ2XPmzBFRnQAWNAhbNgCwhtpDdmPMnTs3JyfHOWk0JUMahI1WAVjDVoE0S/leF2cuTMjvdUu1+BuALRFI/+H3uqKxQdFVyKiqaCk9JABmI5AwNc7rA2ABAglTYxoJgAUIpP+gH5CCbHsIAbAfAuk/9JOQ6AdMaNV9PB4LwFwE0l1ss3WQ4eg+AjAbgXQXBqYmwzQSALMRSHdhYCo10hqAeQikuzAwlUIw4CGtAZiHQBqLoxYmU1WUS1oDMA+BdBdOW0iNtAZgHgJprKqi3LpTbG49AdIagKkIpLGCAQ8DU5Nhl1UA5iGQxmJ9cwq0DADzEEgT4Gmkyay6L0t0CQBsi0CawKr7shrO94quQkYsiwdgHgJpAn6POxobYmxqPH27P9baATADgTQBv9f1SlnBwfBXoguRkd/jisY5xhCA8QikiVUV5dJDmhATbABMQiBNjLV2KTCNBMAMBNKkeEJ2Qqvuy4rGGLIDYDwCaVL6E7J0ksbwe9yiSwBgTwTSpPxe19aHclnaMIbf62qNMIcEwHgEUir60gZWOY/h9zK7BsB4BFIqfq8rGPDUnWYm6S4c9A7ADATSFGrLCugNjOH3uuk1AjAcgTQFff03y+1G83tcVwgkAEYjkKb2dsV32NputHyvi0eRABiOQJqaPpO07Win6EJk4fe6eBQJgOEIpGnRZ5KYOAEA8xBI06I/k8RyOx2HUAAwA4E0XfozSay409FZBGA4Amm6/F5XbVkBy+00TkUCYA4CaQaCAY+maXSStH9nEgAYiECaAb/XVbumgOV2Gsf0ATABgTQzwYAnGPAwcAcAhiOQZqy2rKDhfK/DZ1DYPQiA4QikGdNXN2w72iG6EMHYPQiAsQikdOirGxrCzt1PiA2/ARiOQEqH3+t6u+I7PCcLAAYikNKk793g2BV37K8KwHAEUvqcvHcD+6sCMByBlD6/1/V2xQrHdpIAwFgE0qwEAx4nD9wBgIHmii7AMLdu3Tp+/PgXX3yxZMmSxx57bOnSpdbct6ood/Ubba2RuL70Th6mNggbfgMwnE16SIlEYsuWLa+//vrAwMAHH3zwgx/8IBqNWnNrOQfuBDYIAKTHJoHU0tJy6dKlP/3pT7/4xS8aGxsXLVr07rvvWnZ3CQfuxDYIAKTBJoF0/fr1hx56aNmyZZqmud3u3NzceNzSxW+yrbgzu0H8XhdbBwEwlk3mkCoqKioqKvTX58+fv3jx4hNPPDH+Y6FQqL6+XtO08vJyn89nYAF+r+vMs99b/UZbd81KAy8bCoXOnTunvyguLp7+F61pkGhsyOJzKNJuEADys0kPSTcyMnLkyJGnn3563bp1jz76aIpP9vT0GH53Mx6VnWVqmtogQo5EMvZ/IwBIxSY9JE3Tvv766507d3Z2dv70pz+tqKjIyMgY/5ni4uLq6mrzaqgqyt12tKMh3Lu1KNeQC/p8Pr1gvR8zIxY0SDQ+aHEszaZBAEjOJoE0ODi4ZcuWe++998MPP7znnntElaHvcbf6jbZgwCP2TFULGoT9VQEYyyaB9M4771y7du3111/v7+/v7+/XNG3x4sXZ2dnWV5I8nOLMc9+z/u5J8jQIAEyTTQLpwoULAwMDmzdvTv7LU089VVNTI6SYYMBzMNxbd6q7dk2BkAI0Sxrkzhl9AQMvCcDRbBJIUs0oJAfuqopyRQ3cSdUgADAdtlplJw994G71G22iCzGR3+Pi0FgABiKQzLK1KDcY8NSd4hA/AJgWAslEtWUFUm3fYCzO6ANgLALJRH6vq3ZNgVR73BmIM/oAGItAMpeE+64CgJwIJNPJtu+qUTgSCYCxCCTTyXlgEgDIhkCygi0H7jiBAoCxCCSLVBXlRmODNhu4I5MAGIhAsoi+fYPdOkkeVzTOQjsAxiCQrGPGgUkAYBsEkqVsNnDn97rP/uOG6CoA2ASBZCmbDdxxJBIAAxFIVrPTwN2q+7Js09sDIByBJICdHpXl2VgARiGQBLDNo7J+j1t0CQDsg0ASIxjwBAMe1TNJfw6JR5EAGIJAEsYeh1MEA1k8igTAEASSMPqpsqqf4MfKbwBGIZBECgY8mqY1hHtFF5I+Vn4DMAqBJJL+WFLdaYU7Saz8BmAUAkkwv9el9OoGTkUCYBQCSTx9dYOia9VYaAfAKASSeHdWNyg7cMdCOwCGIJCkEAx41F0CHgx4WGgHYPYIJCkovQScdQ0ADEEgyUJfAq7iX3bWNQAwBIEkC7/XVVWUq2Inye91+T0uFaMUgFQIJImo20nSNI1pJACzRCBJRN1Okn6ghugqAKiNQJKLop2kYMDDNBKAWSKQ5KJoJ4lpJACzRyBJJxjwtEZuqPjHnWkkALNBIEnH73W9UlZwMPyV6EJmpnZNgYohCkAeBJKMVFwjwNNIAGaJQJKRPiWj1jlJTCMBmCUCSVK1a9TbbjUY8Cg30ghAHgSSpPwet6ba+m8VRxoByINAkpTf69r6UK5a69YYtQMwGwSSvFbdl9VwXqVpJI1ROwCzQCDJKxjwKNfhYNQOQNoIJKkpd/Ydo3YA0kYgSU3FUTsVtz4CIAMCSWp+jzsaG4rGVHrglI1WAaSHQJKa3+sKBrKi8UHRhcyAik/1ApABgSQ7FUfAatcUHCSQAMzQXNEFTNetW7eOHz/+xRdfLFmy5LHHHlu6dOmYD7S1tbW3tyfflpSU5OfnW1ujKYIBT93pbm3x2H+XuUH8Hre+Ybl+vBMATIcagZRIJLZs2XL16tVgMPjBBx+8+eabjY2Nfr9/9GeOHDly8eLFgoIC/W1hYaE9AsnvdUVjQ1cSQ/keV/IfJW+Q5IblBBKA6VMjkFpaWi5dutTU1LRs2bLBwcG1a9e+++67L7300ujPdHV1PfPMM48//rioIs0TDGRFv7grkORvkKqi3NVvtAm5NQBFqTGHdP369YceemjZsmWaprnd7tzc3Hj8riddhoeHL1++nJWV1dzc/Omnnw4PDwuq1BTBgGfMkz3yNwhLGwDMlBo9pIqKioqKCv31+fPnL168+MQTT4z+QCQSSSQSO3bs8Pl8V69ezcvLO3To0JIlS8ZcJxQK1dfXa5pWXl7u8/msKX42QqHQuXPnYkPfGshermn/CRUlGqR2TUHdqe6tRbkGXlNvEP1FcXGxgVcGIJwaPSTdyMjIkSNHnn766XXr1j366KOjf3T79u1NmzY1Nzd/9NFHTU1N8Xh8//79KS7V09NjcrHGSIbEbXf2+J9K3iBmbFiuxP9GAEhPxsjIiOgapuXrr7/euXNnZ2fnzp07KyoqMjIyUnz45z//eVtbW2Nj4+h/1LsC1dXV5hZqgmhsaHnNf7/2na9GF69EgzSEe89GbrxdscLwK6v7XxPAZNToIQ0ODm7ZskXTtA8//PCJJ54Y/8f32LFj+/btS77t7++fN2+epSWaye91DS+8q4ekSoPos19q7TQBQBQ1Aumdd965du3arl27+vv7u7u7u7u7r1+/rmlaTU3N4cOHNU1bvHjxgQMHGhsbb9682dLS0tTUVFZWJrpqI/m9rsHs5cm3qjSI3+u68xwVAExFjUUNFy5cGBgY2Lx5c/JfnnrqqZqamhMnTgwMDFRWVq5du7ajo6O2tnbXrl0LFiyorKzcunWruHqN5/e4NO1/k28VapDasgLWfwOYDjUCSZ8wGO/SpUvJ1y+++OILL7wQi8Wys7PnzJljVWkW8Xvdw67/jNop1CDJ9d/GLrcDYD9qDNlN09y5c3NycuyXRmmTpEFq1xQwagdgSrYKJMhJP/qWh2QBpEYgqcHvcU34KJIq6CQBmBKBBCvonSSONgeQAoEEi6h4sBMAKxFIaojGh+YOXhddxazoR1HQSQIwGQIJFvF7XXSSAKRAIME6dJIApEAgqSEaG5w3oPaQnUYnCUBKBBIsFQx4ovEhOkkAxiOQ1BCND7mvfyG6CgP4va7asgI6SQDGI5DUYKcTHOgkAZgQgaQAO6WRRicJwCQIJAW0RuKL/9+noqswEp0kAOMRSBBA7yQdDH8luhAAEiGQFHA2cuN+94DoKgymn25OJwlAEoEEMegkARiDQFJAQ7g3GMgSXYXx6CQBGI1Akp3+9zrf4xJdiPH8Xlcw4KGTBEBHIMkuGhvaWpQrugqz1JYVtEbiNlvXDiA9BJLszkZurLLjeJ1O7yRxmCwAjUCSX2skrm+SbVd6J0l0FQDEI5BkF40N+b02nEBK0jtJ2452ii4EgGAEktQawr02nkBKopMEQCOQJGfvCaQkv9fl97gawr2iCwEgEoEkNdtPICXVrilgaQPgcASSvBrCvbafQEoKBjx+j4uBO8DJCCR5nY3ccMIEUhKnmwMORyDJqzUSrypaKroK63AmBeBwBJK8orEhh0wg6dhuFXA4AklSDlnwPYa+3aroKgCIQSBJqu50t6PG63Ss/wacjECSlNPG65JY/w04FoEkI2eO1+lY/w04FoEkI2eO1yVxSBLgTASSdPTzgZw5XqerKsqlhwQ4EIEknYPhr96uWCG6CpH0pQ1kEuA0BJJ0GsK9Tu4e6di1AXAgAkku+nIGh+xfl4K+ZO25ugAABhxJREFUa4PoKgBYikCSy8FwrxPOm5gSo3aAAxFIcml12IaqKTBqBzgNgSSRbUc7SaMkRu0ApyGQJNIaideWFYiuQhaM2gFOQyDJQl9cx3KG0YIBz9l/3BBdBQCLEEiyYDnDeKvuy6KHBDgHgSSFaGyI5Qzj+T1uppEA55grugDDDA4Ovvfee93d3ffee+/mzZtzcnJEVzQDdae7DU8jpRtEl5xG4klhwAls0kNKJBJPPvnkH/7wh/7+/j//+c+PPvrotWvXjLp4T09PKBRK77vvv//+dD7WEO4ds5xhml+cjKkNMqFZFpziUtEYnSTAEWwSSGfPnv373/9+9OjRvXv3Hj58+J///OeZM2eMungoFGpsbDTvi+N3Z+jp6amvr0/jjkmmNsh4aTfReGN+92DAc4VAApzBJoH0rW9968c//nFubq6maW63OzMzc9GiRaKLmq6D4V7DD5tQukFGY10D4Bw2mUN6+OGHH3744Vgs9pvf/ObMmTMrV64sKSkZ/7FQKJRGz0Mfskvvi1P2dW4vzG6NLC1v/tOlu7+oadroL4ZCoeLi4unf2tQGGW86v+n0L6WN+t2vxIeic/5r/JVn2iAA5JcxMjIiugbD9PX1vfXWWxcvXrxy5cqvf/3roqKiMR8w5C+mKNXV1TP9Cg0CQCE2CaTBwUFN09xut/72Rz/60fz583/3u98JLUokGgSAcmwyh/Tqq69WVFQk3wYCAX3kx7FoEADKsUkgFRcXd3V1/eEPf+jr6/vLX/5y/Pjx73//+6KLEokGAaAcmwzZaZq2b9++gwcPDg8PZ2Zmrl+/fs+ePckBK2eiQQCoxT6BpGlaIpHo6+vzeDzz588XXYsUaBAACrFVIAEA1GWTOSQAgOps8mDsjHR0dHzyySemPsWSSCSOHz/e2dnp9Xo3btyYl5dn3r2mb8qq2tra2tvbk29LSkry8/NneU2L6wGgLscN2fX19T3//PP9/f0nT5407y7PPvvsZ599Vlpa2tXV9eWXXzY2Ni5btsy82xlV1U9+8pOLFy8WFNzZ5nX79u3jn6Wd6TUtrgeAwkacZPPmzStWrFi+fPn69evNu8tf//rX5cuXf/LJJyMjI//6179KS0t/9rOfmXc7A6tav379e++9Z+w1rawHgNKcNYe0Z8+ew4cPP/nkkxkZGebdpb293e12B4NBTdPmz59fUlIyetxJlCmrGh4evnz5clZWVnNz86effjo8PDz7a1pcDwClOWsO6YEHHtA07cKFC+fPnzfvLrFYLCcnJzPzTtgvXbo0FouZd7tpmrKqSCSSSCR27Njh8/muXr2al5d36NChJUuWzOaaFtcDQGl2DqTLly8ng+f+++9/8MEHrbnvN998M/ptZmZmIpGw5tajjfn1p6zq9u3bmzZtqq6uzsvLu3Llyg9/+MP9+/e/8sorKW4xm9/UjHoAKM3OgfS3v/3tj3/8o/563bp1lgXSggULBgYGkm/7+/tdLleKz5tkzK8/ZVWFhYV79+7VX+fn52/YsKGtrS31LWbzm5pRDwCl2TmQ1q1bt27dOuvvm5eXd+3atb6+Pn18qbOzU8iy7zG/fnNzc+qqjh07duXKlZdeekl/29/fP2/evNS3mM1vOuV306gHgNKctajBGitXrly4cOHu3bt7enpOnjz58ccfl5aWii4qVVU1NTWHDx9evHjxgQMHGhsbb9682dLS0tTUVFZWlvY1065HL0bTtDTqAaA20cv8BPj973+/ceNGU29x+vTp4uLi5cuXf/vb3965c+fw8LCpt5umyaoqLCzcsWPHyMjIa6+9VlhYuHz58u9+97u//OUvb9++nfY1064nWUx69QBQl+MejLXMyMhIX1/fokWLhEwgTWbKqm7fvh2LxbKzs+fMmWPUNS2uB4CiCCQAgBSYQwIASIFAAgBIgUACAEiBQAIASIFAAgBIgUACAEiBQAIASIFAAgBIgUACAEiBQAIASIFAAgBIgUACAEiBQAIASIFAAgBIgUACAEiBQAIASIFAAgBIgUACAEiBQAIASIFAAgBIgUACAEiBQAIASIFAAgBIgUACAEiBQAIASIFAAgBI4f8DD8zj3IvXJLcAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "[t, X] = ode45('masses', [0 3], [0.25 0.0 0.75 0.0]);\n", + "subplot(1,5,1)\n", + "plot(X(:,1), t);\n", + "%plot(0,0, 's');\n", + "set (gca, 'ydir', 'reverse' )\n", + "%box off; set(gca,'Visible','off')\n", + "\n", + "subplot(1,5,2)\n", + "plot(X(:,3), t);\n", + "set (gca, 'ydir', 'reverse' )\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this case, the resulting motion will be a complicated superposition of the two modes." + ] } ], "metadata": { diff --git a/content/bvps/finite-difference.ipynb b/content/bvps/finite-difference.ipynb index f0495c2..e8fc766 100644 --- a/content/bvps/finite-difference.ipynb +++ b/content/bvps/finite-difference.ipynb @@ -631,20 +631,8 @@ "\\frac{d^2 T}{dx^2} - \\frac{h P}{k A_c} \\left(T - T_{\\infty}\\right) - \\frac{\\sigma \\epsilon P}{h A_c} \\left(T^4 - T_{\\infty}^4 \\right) = 0\n", "\\end{equation}\n", "\n", - "This is a bit trickier to solve because of the nonlinear term involving $T^4$. But, we can handle it via the iterative solution method discussed above, moving the nonlinear parts to the right-hand side:\n", - "\\begin{align}\n", - "\\frac{T_{i-1} - 2T_i + T_{i+1}}{\\Delta x^2} - m^2 \\left( T_i - T_{\\infty} \\right) - M^2 \\left( T_i^4 - T_{\\infty}^4 \\right) &= 0 \\\\\n", - "\\frac{T_{i-1} - 2T_i + T_{i+1}}{\\Delta x^2} - m^2 T_i &= M^2 \\left( T_i^4 - T_{\\infty}^4 \\right) - m^2 T_{\\infty} \\\\\n", - "T_{i-1} + T_i (-2 - \\Delta x^2 m^2\n", - "\\end{align}" + "This is a bit trickier to solve because of the nonlinear term involving $T^4$. But, we can handle it via the iterative solution method discussed above." ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] } ], "metadata": { diff --git a/content/bvps/masses.m b/content/bvps/masses.m index 006138d..6d4d929 100644 --- a/content/bvps/masses.m +++ b/content/bvps/masses.m @@ -1,4 +1,5 @@ function dxdt = masses(t, x) +% this is a function file to calculate the derivatives associated with the system m1 = 40; m2 = 40; diff --git a/content/bvps/shooting-method.ipynb b/content/bvps/shooting-method.ipynb index b6c9e01..1ba9df2 100644 --- a/content/bvps/shooting-method.ipynb +++ b/content/bvps/shooting-method.ipynb @@ -75,7 +75,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 2, "metadata": {}, "outputs": [ { @@ -91,7 +91,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGkCAIAAACgjIjwAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAAB3RJTUUH5AIMFh04vtIUrAAAACR0RVh0U29mdHdhcmUATUFUTEFCLCBUaGUgTWF0aFdvcmtzLCBJbmMuPFjdGAAAACJ0RVh0Q3JlYXRpb24gVGltZQAxMi1GZWItMjAyMCAxNDoyOTo1Nl0wEuYAACAASURBVHic7d17UJTXwcfxA3gJBhAQQbKx8ZLEGp3OaHGJvn2rmBhjLlZMJyHV12hjbxnXaWMctdjxlkujY8cWL23SRKJNJNWwxkYSNCqZSWNdlYyIYKpkibpqEwQ0FFDAff942i0FZRfYfc45z34/fy3tpvure8LPc57znCfC6/UKAABki5QdAAAAISgkAIAiKCQAgBIoJACAEigkAIASKCQAgBIoJACAEigkAIASKCQAgBIoJACAEigkAIASKCQAgBIoJACAEigkAIASKCQAgBIoJACAEigkAIASKCQAgBIoJACAEigkAIASKCQAgBIoJACAEigkAIASKCQAgBIoJACAEnrIDtBFDQ0N+fn5n3/+eWpq6ve///34+HjZiQAA3RLh9XplZ+i0+vr66dOnX716dezYsS6X6+rVq7t3746Li5OdCwDQdVrOkHbs2HHx4sUPP/wwKSnp66+/njx58htvvOFwOGTnAgB0nZbXkCoqKoYNG5aUlCSEiI2NHTVqVElJiexQAIBu0XKGlJKS8sEHH9TX1/fp06elpeXUqVO9evVq/7acnBzzswGAshRfSdJyhjRt2rTGxsbZs2e/8cYbTz/99D/+8Y/r16+3eU9OTo7L5ZISz2f9+vVyAzidTo/HIzGAx+NxOp0SAwgFvgWXy8VQZCgKBb4Fl8ul+F/TtZwh3Xbbbdu3b3/99df37dtnt9vvuuuukydPtn+b3W6X+NcB418AuX8fcblc06dPt9vtEgN4PB65fwhOp3P69Ok2m01WAONXAEORoajIUFSZloV0+vTpo0ePvvjii5GRkUKIxx9/fOTIkbJDAQC6Rcslu8TExJdffvmVV165dOnSn/70p5KSkmnTpskOBQDolqjly5fLztBp0dHRffv2feutt37zm998+umnS5Ysuf/++9u8x1i1T09PlxFQCCG+/vrr9PR0idNzIURERET7PxmTDR8+XO4fQlxcnMSVIiFEREREenq6xPvkGIoGhqL034p+aXljrM+lS5cSExMjIiLa/1fSF+4BQCnq/1bU8hqST79+/WRHAAAEh5bXkAAA1kMhAQCUQCEBAJRAIQEAlEAhAQCUQCEBAJRAIQEAlEAhAQCUQCEBAJRAIQEAlEAhAQCUQCEBAJRAIQEAlEAhAQCUQCEBAJRAIQEAlEAhAQCUQCEBAJRAIQEAlEAhAQCUQCEBAJRAIQEAlEAhAQCUQCEBAJRAIQEAlEAhAQCU0EN2gC66du3azp07T5482a9fv0ceeeSOO+6QnQgA0C26zpDmzp27Zs2axsbGgoKCRx999NSpU7ITAQC6RctCOnv27KFDh1avXv3iiy/u2LGjV69eBQUFskMBALpFy0Lq27dvVFRUY2OjEKKpqampqSkpKUl2KABAt2h5DSkuLm7RokXPPfec0+k8fvz4iBEjpk2b1v5tHo/H6XQar+12u81mMzcmAEjm8XhcLpfx+q+lFf8zcqjcPB3TspCuXLmyffv2hIQEm83W0NBQWlr6ySefTJo0qc3bfF+DEMJms1FIAMKNx+M5dOiQ8XrX1W+m94mTm6djWhZSUVHRmTNn9u7dm5KSIoSYP3/+q6++2r6QMjMzHQ6HjIAAoAS73W6324UQGRuL76ot6lHfJDtRR7S8hnTu3LmePXsmJCQYP95zzz0ej0duJABQ1py8ciHE3BE9ZQfxQ8tCSktLq6urW7t27fnz50tKSrZt2zZ27FjZoQBARUUVNZXVDQeeGS07iH9aLtnZ7fYlS5bk5OTk5uYKIcaPH5+dnS07FAAop6iiZk5euTt7nOwgAdGykIQQs2fPnjVrVlVVVUxMTJ8+fWTHAQDlVFY3Zmz89MAzo2QHCZSuhSSEiIyMTE5Olp0CABQ1J6/swDOjJgxNkB0kUFpeQwIAdCxjY/GEoQkatZGgkADAelYUuoUQyyYPlh2kcygkALCUooqaoooaLbbVtaHxNSQAQBt6batrg0ICAIvQbltdGyzZAYBFaLetrg0KCQCsQMdtdW1QSACgvYyNxULDbXVtUEgAoDdjk7eO2+raYFMDAGisqKIm98gFTbfVtcEMCQB0ZWzyPvAz7edGBmZIAKAl3ybvQYm3yM4SHMyQAEBLum/ybo9CAgD9ZGwsfmpMqpXaSFBIAKCdjI3FgxKjZ49JlR0kyCgkANCJscl7c9Zw2UGCj0ICAG3kHr6g6UnegWCXHQDooaiiZsUetzVuObohZkgAoAHjliNLrtT5MEMCANX5bjmy2La6NpghAYDSKqsbMzYVW76NBIUEAIqbk1e2OWu45dtIUEgAoDJL3gB7MxQSACjKeOae9W6AvRkKCQBUNCevXOj/zL1OoZAAQDkrCt2V1Q1WvQH2ZrTc9n3y5MmDBw+2/k/69u07ffp0WXkAIIisfRxDB7QspLNnzxYWFvp+rKioGDBgAIUEwAIsfxxDB7QspEmTJk2aNMl4feLEiaeeemrlypVyIwFA9xnHMYRnGwlNC8mnoaFh3rx5P/3pT0eNGiU7CwB0S1FFjXEcg+wg0uhdSK+88ooQYtasWTf8bz0ej8vlMl7bbDabzWZeMgDojBAdDuTxeDwej++14r8GNS6k2tra1157LTs7u1evXjd8g8vl8n0TDodD8W8CQNgK3eFAHo8nJyfH9zozMzO4//vBpXEh7d692+v1Tpky5WZvyMzMdDgcZkYCgM6qrG4M3eFAdrt969atxmtfMylL4/uQdu/e/Z3vfCcuLk52EADoujl5ZcsmDw6Tw4E6pmsheb3e8vLyb33rW7KDAEDXhdVRdX7pWkgXLlyor6+/8847ZQcBgC4y2ih8jqrzS9drSLfddttnn30mOwUAdFG4HZwaCF1nSACgr4yNxYMSo8Pq4NRAUEgAYCrjGO/NWcNlB1EOhQQA5pmTVx6Gx3gHiEICAJOE50MlAkchAYAZwvahEoGjkAAg5HIPX3jj8AXaqGMUEgCEFm0UIAoJAEKINgochQQAoVJUUUMbBU7XkxoAQHFh/vjXLmCGBADBRxt1AYUEAEFGG3UNhQQAwUQbdRmFBABBQxt1B4UEAMFBG3UThQQAQUAbdR+FBADdRRsFBYUEAN1CGwULhQQAXZd7+AJtFCwUEgB0kXFOHW0ULBQSAHQFp6YGHYUEAJ1GG4UCh6sCQOesKHTz7NdQoJAAoBPm5JVXVjfQRqHAkh0ABIo2CikKCQACQhuFGkt2AOBfxsZiIQRtFFIaF1JxcfFf//rX6OjoyZMnDxw4UHYcAJaVsbF4UGL05qzhsoNYnK5Ldtu2bZs1a1ZpaemHH344adIkt9stOxEAa6KNTKNlIX399dcvvvjir371qz/84Q95eXlpaWnbt2+XHQqA1VRWN2ZsLH5qTCptZA4tl+yKiop69+792GOPnTlzprm5ecuWLZGRWjYrAGVVVjfOySt7akzq7DGpsrOECy0L6ezZs4mJiU888URZWdn169eHDh36+9///hvf+Eabt3k8Ho/HY7y22WymxwSgq8rqxsEvfHLgmVEThibIztItvt+BWtByYnH58uUvvvhi9OjRJSUl+/bta25ufumll9q/zeVy/d+/OZ1O83MC0JFl2kgI4fF4fL8G169fLzuOH1rOkG699dbIyMgFCxb07Nnz9ttvf/LJJzds2ND+bZmZmQ6Hw/x4APRlPNzIGm0khLDb7fv37zde5+TkyA3jl5YzpCFDhgghWlpajB+bm5t79NCyWQEoxWijzVnDrdFG2tGykMaPHx8TE7Nq1aqamprS0tItW7bcd999skMB0Nu/5kY/G00byaLlxCI2NnbTpk3Z2dn33ntvVFRURkbGokWLZIcCoLHcwxdW7HHzqD25tCwkIURaWlphYWFtbW10dHTv3r1lxwGgMeNxErSRdLoWkiE+Pl52BAB645A6dWh5DQkAgsI4Fog2UgSFBCAcGccCTRiawLFA6tB7yQ4AusBKt75aCTMkAOGlqKKGNlIThQQgjFjsIAaLYckOQLjgZiPFUUgAwgI3G6mPQgJgfdxspAWuIQGwMt/2btpIfcyQAFiWsb17c9ZwnvqqBQoJgDWxoU47LNkBsKDcwxd4spF2mCEBsJo5eeWV1Q1sqNMOhQTAUthQpy+W7ABYBBvqdMcMCYAVcF6qBTBDAqC9ooqajE3FtJHumCEB0NuKQnfukQsHfjZ6UOItsrOgWygkABoztjCwoc4aWLIDoCW2MFgPMyQA+imqqMnY+CkXjSyGGRIAzRinMNBG1sMMCYBOOIXBwpghAdCDcdFIcAqDdVFIADRg3Pf61JjUzVnDZWdBqLBkB0B1uYcvrNjj5qKR5elaSMXFxceOHfP9OHHixDvuuENiHgAhwkWj8KFrIb311lslJSWDBw82fhw5ciSFBFhMZXXjnLyyQYnRXDQKE7oW0smTJ3/yk5889thjsoMACAnjTiOePh5WtCykpqamzz//PD4+vqCgICEhIS0trWfPnrJDAQiafx1Px0WjMKNlIVVUVLS0tPz85z+32Wznzp0bOHDg1q1bk5KSZOcC0F3GMp3geLqwpOW27+bm5u9973sFBQUffPDB7t27a2pq1q9f3/5t69evH/ZvTqfT/JwAOqWyujFjE8fTBZPT6fT9Grzh70mlRHi9XtkZuuv5558vLi7Oz89v/R/m5OQIIRwOh6RQADrH2Nu9OWs4y3Qhov5vRS2X7P785z9/8cUXCxcuNH6sq6vjGhKgNZ5pBKHpkl1cXNzrr7+en5//z3/+c//+/bt3737ggQdkhwLQFcaBQJU1je7scbRRmNNyhvTggw+WlZUtW7ZsyZIlvXv3njFjxuzZs2WHAtBpPEUCrWlZSEKIZ599dv78+dXV1f369YuKipIdB0CnGct0TIzgo2shCSF69OiRnJwsOwWATvMdwcDebrSmcSEB0BHLdLgZCgmAeVimQwcoJABmYJkOflFIAEKOZToEgkICEFpz8sqLKmpYpoNfWt4YC0ALxnPHByXcQhshEMyQAISEsX+Bs+kQOAoJQJDxCAl0DUt2AIKpqKJm8Auf8AgJdAEzJABBw5Ne0R3MkAAEgbF/QQjhzh5HG6FrmCEB6C72LyAoKCQAXcf+BQQRS3YAumhFoTtjUzH7FxAszJAAdJpvYsRDxxFEzJAAdE7u4Qu+jd20EYKIGRKAQBkTo8qaRo4CQigwQwIQEN8dr7QRQoQZEgD/uOMVJmCGBKAjxsRIcMcrQo8ZEoAbq6xufOPwBe54hWmYIQG4ASZGMB8zJAD/xTcx4ooRTMYMCcB/MDGCRMyQAAjR6h4jJkaQhRkSgP+6x4g2gizMkICwxsQI6tB+huR0OvPy8mSnALS0otDNxAjq0LuQTpw4sXTp0oMHD8oOAmimsroxY2NxUUWNO3vcssmDZccBhNB6ya6xsXHhwoUpKSmygwCaMc4BWvbA4NljUmVnAf5D40Jas2bNsGHDkpOTL168KDsLoIeiipo5eeWz01J5wCsUpOuS3ccff1xYWLhs2bIO3rN+/fph/+Z0Ok3LBiiosrpxTl75nLzyzVnDWaMLH06n0/drcP369bLj+KHlDKm2tnbx4sWrVq2Kj4/v4G3z5s1zOBympQKUtaLQvXyPe/kDg5kYhZvMzMzMzEzjdU5OjtwwfmlZSGvXro2Jibl8+fLOnTtPnz595cqVgoKChx56SHYuQDk8Ug8a0bKQ4uLiYmNj33zzTSHE+fPnm5qa8vLyKCSgNd+RdLPTUlmjgxa0LKSFCxf6Xr/00ksXL1787W9/KzEPoJrcwxfm5JWzRge9aFlIbURG6ro1Awg6Tl6AvrQvpCVLlsiOAKjCuMGINTpoirkFYAVFFTURC/YLITh5AfrSfoYEhDnW6GAZFBKgK/bRwWJYsgO0ZBzULVijg4UwQwI0w72usCoKCdCGb42Og7phSSzZAXpovUZHG8GSmCEBqjOeGTEo4Rbv2omyswAhRCEB6vJdLtqcNZwt3bA8CglQEVu6EYYoJEAtRhXx+CKEITY1AArx7Vzwrp3IxAjhhhkSoATfzgXuLkLYopAAydi5ABgoJEAadi4ArVFIgAStq4idC4CBTQ2A2TgXFbghCgkwz4pCN4/RA26GJTvADLmHL6zY42YTHdABCgkILWM/txCCTXRAxygkIFR8+7l5WgQQCAoJCD5fFbGfGwgchQQEU2V144o97qKKGqoI6CwKCQiO1lXErUVAF1BIQHdxlysQFBQS0HVUERBEFBLQFVQREHS6FlJDQ8OOHTvcbndKSkpmZmZycrLsRAgXVBEQIloWUktLyw9+8IPq6ur09PT9+/dv3rz5L3/5S//+/WXngsVRRUBIaVlIH3300alTp/bu3ZuamurxeO6///4DBw48/vjjsnPBsqgiwARaFtKtt976ox/9KDU1VQgRHR0dGRkZGxsrOxSsiSoCTKNlIaWnp6enp1dXV2/YsOHAgQPjxo2bOHFi+7c5nU6n02m8djgcmZmZ5saE3rivCBbgcrkWL15svPZ4PPPmzZObp2NaFpLh+vXrvXr1Sk1NLS8vLykpGTNmTJs32O12h8NhvLbZbKYHhK6oIliGzWbbunWr8To/P19uGL+0LKSGhgYhRFJS0qJFi4QQP/zhD1977bX2hWSz2eghdErrM+ioIliAXr8DtSykF1544fjx4++++67x49ChQ//2t7/JjQTd+R4SwRl0gCxaFpLdbt++ffsf//jHadOmffbZZzt37uT6ELrMeHSeEIKHRAByaVlIU6dO/eyzz9atW7dmzZrIyMiHH374F7/4hexQ0M+KQnfukQuCKgLUoGUhCSEWLlz47LPPVlVVJSQk9OrVS3Yc6MTYyb18j3vC0Hie4gqoQ9dCEkJERUWlpKTITgGd+Kpo+QOD3dnjBiXeIjsRgP/QuJCAwLWuIu/aG9y1BkA6CgkW1/qmIqoIUBmFBMvybZ/jpiJACxQSrMZ3+pxg+xygFQoJ1tF6+9yBn41mzwKgFwoJVtDmTG6qCNARhQS9FVXUrCh0c/ocYAEUErTU+kIRp88B1kAhQTNcKAKsikKCNto8pogqAiyGQoIGfKegcqEIsDAKCeryrc4NSryFO4oAy6OQoCJW54AwRCFBIW32zrE6B4QVCglKYHUOAIUEyVidA2CgkCAHq3MA2qCQYLbWz8rjzlYAPhQSTNJmSsSz8gC0QSEh5Fof9sOGBQA3QyEhhFqfsMCUCEDHKCQEH3u4AXQBhYRganPoHBsWAASOQkIQMCUC0H0UErplRaG7qKLG98BWpkQAuoxCQle0nhLxwFYAQaFrIV27dm3nzp1///vfk5KSpk2bNmDAANmJwkL74xWYEgEIFi0LqaWlZebMmefOnZswYcK77777yiuv5OfnDxo0SHYuK+MqEYBQ07KQ9u/ff/z48d27dw8ZMqShoeHBBx/cvn37woULZeeyII5XAGAaLQvp0qVLaWlpQ4YMEUJER0enpqbW1NTIDmU1xiHcuYcvLH9g8Oas4ROGJshOBMDitCykrKysrKws4/WRI0dKSkqefPLJ9m9zOp0ul8t47XA47Ha7eRG11Wa3AlMiQGsulysnJ8d47fF4MjMz5ebpmJaFZPB6vdu2bXv55ZenTJkyderU9m+w2+3Tp083XttsNnPT6YcN3ID12Gw2h8NhvM7Pz5cbxi9dC+nLL79csGBBeXn54sWLs7KyIiIi2r/HZrMxK/KLDdyAhdlsNt9fxw8dOiQ3jF9aFlJDQ8PMmTNTUlLef//9/v37y46jJXYrAFCNloX09ttvf/XVV+vWraurq6urqxNCxMXF9evXT3YuPeQevvBRRS27FQCoRstCOnr0aH19feurc7NmzcrOzpYYSX3sVgCgOC0LybdpBH5xtgIAXWhZSAgES3MA9EIhWQ1LcwA0RSFZBEtzAHRHIWmv9Q2tLM0B0BeFpCtuaAVgMRSSZrhEBMCqKCQ9cIkIgOVRSKprvXubJ+MBsDAKSVEszQEINxSSWtr0EEtzAMIHhaQELhEBAIUk2YpCd2VNI5eIAIBCkoNLRADQBoVkKnoIAG6GQjIDl4gAwC8KKYSMHuKgOQAIBIUUEr6tChOGxj81JpWtCgDgF4UUTFwiAoAuo5CCgB4CgO6jkLqOrQoAEEQUUqexVQEAQoFCCpSvh4oqapc/MJitCgAQXBSSf0UVNR+drvVdIjrwzGjZiQDAgiikm2KrAgCYiUJqiwdAAIAUFNK/sGUOAOQK90JiyxwAKELvQiorK9u3b5/D4ejsP2j0kHG6z+wxqWyZAwDpNC6kqqqqlStX1tXVdaqQ2myZY6sCAChC10KaPn36yZMnW1pa7rrrrkDez5Y5AFCcroW0atWqa9eu7dq168iRIx28jS1zAKALXQtpxIgRQoijR492UEgLygYsyP5L3LmDT9x2/dknfmC3DzYxIADI53K58vPzfa8zMzPl5umYroUUiKm9T84YP1KI/xVC2Gw22XEAwGw2my09PV12ikBZuZDGD41X/K8DABBSNpvN92vw3LlzcsP4FSk7AAAAQlBIAABFaF9IERERsiMAAIJA70KaO3furl27ZKcAAASB3oUEALAMCgkAoAQKCQCgBAoJAKAECgkAoAQKCQCgBAoJAKAECgkAoAQKCQCgBAoJAKAECgkAoAQKCQCgBAoJAKAECgkAoAQKCQCgBAoJAKAECgkAoAQKCQCgBAoJAKAECgkAoAQKCQCgBAoJAKAECgkAoAQKCQCgBAoJAKAECgkAoAQKCQCgBF0LqaWl5Z133nn++ec3btx49uxZ2XFuzOl0yg3gcrk8Ho/cDNL/EKQH8Hg8LpdLbgbpfwgMRRUCqE/XQpo3b97zzz9/5cqVDz744NFHH/38889lJ2rL4/Hk5OTIzZCTkyP3t4DL5crPz5cYQCjwh5Cfn3/o0CGJARiKgqGoCS0L6cSJE/v371+7du3q1at37NiRnJz82muvyQ4FAOgWLQvp2LFj0dHREyZMEEL06tVr4sSJx44dkx0KANAtPWQH6Irq6urk5OTIyH+16YABA6qrq9u/zeVySVypMObmcpdKPB6P3PUij8ejyHqRzWaT9enGBSSGIkNRKDAU7Xa7rE8PRITX65WdodN+97vfvffee3v27DF+3LJly4YNG9qPdemDDwCU4nA4ZEfoiJYzpN69e9fX1/t+rKuru+WWW9q/TfE/egBAa1peQxo4cOBXX31VVVVl/FheXj5w4EC5kQAA3aRlIY0bN65Pnz4rV670eDzvvffehx9+OGnSJNmhAADdouU1JCHE3r17ly5dWltbGxkZ+fDDD//617/u0UPL5UcAgEHXQhJCeL3eqqqq2NjYG15AAgDoReNCAgBYiZbXkAAA1hO1fPly2RmCrKWlxel05ufnl5aWDhgwoG/fvtI/8dq1a++8847T6SwrK7v99ttjYmLMz+DjdDqPHTs2cuRI8wMUFxfv2LHj+PHj/fv3D8X3EuAX8c4775SWlqakpMTHxwc9Q3tlZWV5eXnp6ekmfJbfTzRhKPrN4BOioRhIgFAPRb8ZTB6Kpn3v3WTBGZL55652/IktLS0zZ85ct25dfX39u++++9BDD1VWVpqcwefEiRNLly49ePCg+QG2bds2a9as0tJSY1ek2+02P8PcuXPXrFnT2NhYUFDw6KOPnjp1KugZ2qiqqlq5cmVhYWGoPyiQTzRnKHacwSd0Q9FvABOGot8MZg5F0773IPBaS2lp6d13371v3z6v13v16tVJkyb98pe/lPuJe/bs+eY3v1lRUeH1euvr67/73e+uXr3a5AyGhoaGKVOmZGRkzJ8/3+QAV65cGTlyZF5envHjjBkzXn75ZZMznDlz5u67796/f7/X662vr//2t7+9bt264GZoIzMzc/jw4XfffffDDz8c0g8K8BNNGIp+MxhCNxT9BjBhKPrNYPJQNOd7DwqrbZVuf+7qxx9/LPcTL126lJaWNmTIECFEdHR0ampqTU2NyRkMa9asGTZsWHJy8sWLF00OUFRU1Lt378cee+zMmTPNzc1btmzxHUVoWoa+fftGRUU1NjYKIZqampqampKSkoKboY1Vq1Zdu3Zt165dR44cCekHBfiJJgxFvxkMoRuKfgOYMBT9ZjB5KJrzvQeF1ZbsAjx31cxPzMrK2rp1q/H6yJEjJSUlQb+cEMj/648//riwsHDZsmXB/egAA5w9ezYxMfGJJ56YPHnylClTHnnkkTNnzpicIS4ubtGiRc8999yPf/zjyZMnjxgxYtq0acHN0MaIESNGjRpl5mGaHX+iCUPRbwYR4qHoN4AJQ9FvBpOHojnfe1BYrZCuX7/e+sfIyMiWlhYVPtHr9b711ltPP/30lClTpk6danKG2traxYsXr1q1KkTXTv0GuHz58hdffDF69OiSkpJ9+/Y1Nze/9NJLJme4cuXK9u3bExISbDbbnXfeWV5e/sknnwQ3gxZCOhT9CvVQ9MuEoeiXlKEo93sPkNWW7AI8d9XkT/zyyy8XLFhQXl6+ePHirKysiIgIkzOsXbs2Jibm8uXLO3fuPH369JUrVwoKCh566CHTAtx6662RkZELFizo2bPn7bff/uSTT27YsCFYnx5ghqKiojNnzuzduzclJUUIMX/+/FdffTXcDp0K9VD0K9RD0S8ThqJf5g9F6d97gKxWSL5zV401WRPOXfX7iQ0NDTNnzkxJSXn//ff79+8vJUNcXFxsbOybb74phDh//nxTU1NeXl4Qfwv4DWCsX/umLM3NzUE/6slvhnPnzvXs2TMhIcH48Z577jl69GhwMyjOhKHoV6iHol8mDEW/TB6KKnzvAbLakp35567e7BOzs7ONf+vefvvtr776asmSJXV1dW632+12X7p0yeQMCxcu3P5vjzzyyNixY7ds2WJmgPHjx8fExKxataqmpqa0tHTLli333XdfEAMEkiEtLa2urm7t2rXnz58vKSnZtm3bcRFO6AAAAXBJREFU2LFjg5tBTWYORb8ZQj0U/QYwYSj6zWDyUJT4vXeW1WZI8fHxq1evXrp06cSJE41zV2fMmCHlE3ft2lVfXz9jxoyjR4/W19dnZmb6/pFZs2ZlZ2ebmaHN+4O+rchvgNjY2E2bNmVnZ997771RUVEZGRmLFi0yOYPdbl+yZElOTk5ubq4QYvz48cH9Fjpg/gpJ6080cyj6zdDmPaHY4dZxABOGot8MJg9Fk7/37rDmWXZe089dNf8TFcwQSIDa2tro6OjevXvLynD9+vWqqqqYmJg+ffqEKAO0EOqh6BdDsT1rFhIAQDtWu4YEANAUhQQAUAKFBABQAoUEAFAChQQAUAKFBABQAoUEAFAChQQAUAKFBABQAoUEAFAChQQAUAKFBABQAoUEAFAChQQAUAKFBABQAoUEAFAChQQAUAKFBABQAoUEAFAChQQAUAKFBABQAoUEAFAChQQAUAKFBABQAoUEAFAChQQAUML/A+ABvc+GNBfUAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGkCAIAAACgjIjwAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAAB3RJTUUH5AIbBy8cv4sCbQAAACR0RVh0U29mdHdhcmUATUFUTEFCLCBUaGUgTWF0aFdvcmtzLCBJbmMuPFjdGAAAACJ0RVh0Q3JlYXRpb24gVGltZQAyNi1GZWItMjAyMCAyMzo0NzoyNwcAT2EAACAASURBVHic7d17UJTXwcfxA3gJBhAQQbKx8ZLEGp3OaHGJvn2rmBhjLlZMJyHV12hjbxnXaWMctdjxlkujY8cWL23SRKJNJNWwxkYSNCqZSWNdlYyIYKpkibpqEwQ0FFDAff942i0FZRfYfc45z34/fy3tpvure8LPc57znCfC6/UKAABki5QdAAAAISgkAIAiKCQAgBIoJACAEigkAIASKCQAgBIoJACAEigkAIASKCQAgBIoJACAEigkAIASKCQAgBIoJACAEigkAIASKCQAgBIoJACAEigkAIASKCQAgBIoJACAEigkAIASKCQAgBIoJACAEigkAIASKCQAgBIoJACAEnrIDtBFDQ0N+fn5n3/+eWpq6ve///34+HjZiQAA3RLh9XplZ+i0+vr66dOnX716dezYsS6X6+rVq7t3746Li5OdCwDQdVrOkHbs2HHx4sUPP/wwKSnp66+/njx58htvvOFwOGTnAgB0nZbXkCoqKoYNG5aUlCSEiI2NHTVqVElJiexQAIBu0XKGlJKS8sEHH9TX1/fp06elpeXUqVO9evVq/7acnBzzswGAshRfSdJyhjRt2rTGxsbZs2e/8cYbTz/99D/+8Y/r16+3eU9OTo7L5ZISz2f9+vVyAzidTo/HIzGAx+NxOp0SAwgFvgWXy8VQZCgKBb4Fl8ul+F/TtZwh3Xbbbdu3b3/99df37dtnt9vvuuuukydPtn+b3W6X+NcB418AuX8fcblc06dPt9vtEgN4PB65fwhOp3P69Ok2m01WAONXAEORoajIUFSZloV0+vTpo0ePvvjii5GRkUKIxx9/fOTIkbJDAQC6Rcslu8TExJdffvmVV165dOnSn/70p5KSkmnTpskOBQDolqjly5fLztBp0dHRffv2feutt37zm998+umnS5Ysuf/++9u8x1i1T09PlxFQCCG+/vrr9PR0idNzIURERET7PxmTDR8+XO4fQlxcnMSVIiFEREREenq6xPvkGIoGhqL034p+aXljrM+lS5cSExMjIiLa/1fSF+4BQCnq/1bU8hqST79+/WRHAAAEh5bXkAAA1kMhAQCUQCEBAJRAIQEAlEAhAQCUQCEBAJRAIQEAlEAhAQCUQCEBAJRAIQEAlEAhAQCUQCEBAJRAIQEAlEAhAQCUQCEBAJRAIQEAlEAhAQCUQCEBAJRAIQEAlEAhAQCUQCEBAJRAIQEAlEAhAQCUQCEBAJRAIQEAlEAhAQCU0EN2gC66du3azp07T5482a9fv0ceeeSOO+6QnQgA0C26zpDmzp27Zs2axsbGgoKCRx999NSpU7ITAQC6RctCOnv27KFDh1avXv3iiy/u2LGjV69eBQUFskMBALpFy0Lq27dvVFRUY2OjEKKpqampqSkpKUl2KABAt2h5DSkuLm7RokXPPfec0+k8fvz4iBEjpk2b1v5tHo/H6XQar+12u81mMzcmAEjm8XhcLpfx+q+lFf8zcqjcPB3TspCuXLmyffv2hIQEm83W0NBQWlr6ySefTJo0qc3bfF+DEMJms1FIAMKNx+M5dOiQ8XrX1W+m94mTm6djWhZSUVHRmTNn9u7dm5KSIoSYP3/+q6++2r6QMjMzHQ6HjIAAoAS73W6324UQGRuL76ot6lHfJDtRR7S8hnTu3LmePXsmJCQYP95zzz0ej0duJABQ1py8ciHE3BE9ZQfxQ8tCSktLq6urW7t27fnz50tKSrZt2zZ27FjZoQBARUUVNZXVDQeeGS07iH9aLtnZ7fYlS5bk5OTk5uYKIcaPH5+dnS07FAAop6iiZk5euTt7nOwgAdGykIQQs2fPnjVrVlVVVUxMTJ8+fWTHAQDlVFY3Zmz89MAzo2QHCZSuhSSEiIyMTE5Olp0CABQ1J6/swDOjJgxNkB0kUFpeQwIAdCxjY/GEoQkatZGgkADAelYUuoUQyyYPlh2kcygkALCUooqaoooaLbbVtaHxNSQAQBt6batrg0ICAIvQbltdGyzZAYBFaLetrg0KCQCsQMdtdW1QSACgvYyNxULDbXVtUEgAoDdjk7eO2+raYFMDAGisqKIm98gFTbfVtcEMCQB0ZWzyPvAz7edGBmZIAKAl3ybvQYm3yM4SHMyQAEBLum/ybo9CAgD9ZGwsfmpMqpXaSFBIAKCdjI3FgxKjZ49JlR0kyCgkANCJscl7c9Zw2UGCj0ICAG3kHr6g6UnegWCXHQDooaiiZsUetzVuObohZkgAoAHjliNLrtT5MEMCANX5bjmy2La6NpghAYDSKqsbMzYVW76NBIUEAIqbk1e2OWu45dtIUEgAoDJL3gB7MxQSACjKeOae9W6AvRkKCQBUNCevXOj/zL1OoZAAQDkrCt2V1Q1WvQH2ZrTc9n3y5MmDBw+2/k/69u07ffp0WXkAIIisfRxDB7QspLNnzxYWFvp+rKioGDBgAIUEwAIsfxxDB7QspEmTJk2aNMl4feLEiaeeemrlypVyIwFA9xnHMYRnGwlNC8mnoaFh3rx5P/3pT0eNGiU7CwB0S1FFjXEcg+wg0uhdSK+88ooQYtasWTf8bz0ej8vlMl7bbDabzWZeMgDojBAdDuTxeDwej++14r8GNS6k2tra1157LTs7u1evXjd8g8vl8n0TDodD8W8CQNgK3eFAHo8nJyfH9zozMzO4//vBpXEh7d692+v1Tpky5WZvyMzMdDgcZkYCgM6qrG4M3eFAdrt969atxmtfMylL4/uQdu/e/Z3vfCcuLk52EADoujl5ZcsmDw6Tw4E6pmsheb3e8vLyb33rW7KDAEDXhdVRdX7pWkgXLlyor6+/8847ZQcBgC4y2ih8jqrzS9drSLfddttnn30mOwUAdFG4HZwaCF1nSACgr4yNxYMSo8Pq4NRAUEgAYCrjGO/NWcNlB1EOhQQA5pmTVx6Gx3gHiEICAJOE50MlAkchAYAZwvahEoGjkAAg5HIPX3jj8AXaqGMUEgCEFm0UIAoJAEKINgochQQAoVJUUUMbBU7XkxoAQHFh/vjXLmCGBADBRxt1AYUEAEFGG3UNhQQAwUQbdRmFBABBQxt1B4UEAMFBG3UThQQAQUAbdR+FBADdRRsFBYUEAN1CGwULhQQAXZd7+AJtFCwUEgB0kXFOHW0ULBQSAHQFp6YGHYUEAJ1GG4UCh6sCQOesKHTz7NdQoJAAoBPm5JVXVjfQRqHAkh0ABIo2CikKCQACQhuFGkt2AOBfxsZiIQRtFFIaF1JxcfFf//rX6OjoyZMnDxw4UHYcAJaVsbF4UGL05qzhsoNYnK5Ldtu2bZs1a1ZpaemHH344adIkt9stOxEAa6KNTKNlIX399dcvvvjir371qz/84Q95eXlpaWnbt2+XHQqA1VRWN2ZsLH5qTCptZA4tl+yKiop69+792GOPnTlzprm5ecuWLZGRWjYrAGVVVjfOySt7akzq7DGpsrOECy0L6ezZs4mJiU888URZWdn169eHDh36+9///hvf+Eabt3k8Ho/HY7y22WymxwSgq8rqxsEvfHLgmVEThibIztItvt+BWtByYnH58uUvvvhi9OjRJSUl+/bta25ufumll9q/zeVy/d+/OZ1O83MC0JFl2kgI4fF4fL8G169fLzuOH1rOkG699dbIyMgFCxb07Nnz9ttvf/LJJzds2ND+bZmZmQ6Hw/x4APRlPNzIGm0khLDb7fv37zde5+TkyA3jl5YzpCFDhgghWlpajB+bm5t79NCyWQEoxWijzVnDrdFG2tGykMaPHx8TE7Nq1aqamprS0tItW7bcd999skMB0Nu/5kY/G00byaLlxCI2NnbTpk3Z2dn33ntvVFRURkbGokWLZIcCoLHcwxdW7HHzqD25tCwkIURaWlphYWFtbW10dHTv3r1lxwGgMeNxErSRdLoWkiE+Pl52BAB645A6dWh5DQkAgsI4Fog2UgSFBCAcGccCTRiawLFA6tB7yQ4AusBKt75aCTMkAOGlqKKGNlIThQQgjFjsIAaLYckOQLjgZiPFUUgAwgI3G6mPQgJgfdxspAWuIQGwMt/2btpIfcyQAFiWsb17c9ZwnvqqBQoJgDWxoU47LNkBsKDcwxd4spF2mCEBsJo5eeWV1Q1sqNMOhQTAUthQpy+W7ABYBBvqdMcMCYAVcF6qBTBDAqC9ooqajE3FtJHumCEB0NuKQnfukQsHfjZ6UOItsrOgWygkABoztjCwoc4aWLIDoCW2MFgPMyQA+imqqMnY+CkXjSyGGRIAzRinMNBG1sMMCYBOOIXBwpghAdCDcdFIcAqDdVFIADRg3Pf61JjUzVnDZWdBqLBkB0B1uYcvrNjj5qKR5elaSMXFxceOHfP9OHHixDvuuENiHgAhwkWj8KFrIb311lslJSWDBw82fhw5ciSFBFhMZXXjnLyyQYnRXDQKE7oW0smTJ3/yk5889thjsoMACAnjTiOePh5WtCykpqamzz//PD4+vqCgICEhIS0trWfPnrJDAQiafx1Px0WjMKNlIVVUVLS0tPz85z+32Wznzp0bOHDg1q1bk5KSZOcC0F3GMp3geLqwpOW27+bm5u9973sFBQUffPDB7t27a2pq1q9f3/5t69evH/ZvTqfT/JwAOqWyujFjE8fTBZPT6fT9Grzh70mlRHi9XtkZuuv5558vLi7Oz89v/R/m5OQIIRwOh6RQADrH2Nu9OWs4y3Qhov5vRS2X7P785z9/8cUXCxcuNH6sq6vjGhKgNZ5pBKHpkl1cXNzrr7+en5//z3/+c//+/bt3737ggQdkhwLQFcaBQJU1je7scbRRmNNyhvTggw+WlZUtW7ZsyZIlvXv3njFjxuzZs2WHAtBpPEUCrWlZSEKIZ599dv78+dXV1f369YuKipIdB0CnGct0TIzgo2shCSF69OiRnJwsOwWATvMdwcDebrSmcSEB0BHLdLgZCgmAeVimQwcoJABmYJkOflFIAEKOZToEgkICEFpz8sqLKmpYpoNfWt4YC0ALxnPHByXcQhshEMyQAISEsX+Bs+kQOAoJQJDxCAl0DUt2AIKpqKJm8Auf8AgJdAEzJABBw5Ne0R3MkAAEgbF/QQjhzh5HG6FrmCEB6C72LyAoKCQAXcf+BQQRS3YAumhFoTtjUzH7FxAszJAAdJpvYsRDxxFEzJAAdE7u4Qu+jd20EYKIGRKAQBkTo8qaRo4CQigwQwIQEN8dr7QRQoQZEgD/uOMVJmCGBKAjxsRIcMcrQo8ZEoAbq6xufOPwBe54hWmYIQG4ASZGMB8zJAD/xTcx4ooRTMYMCcB/MDGCRMyQAAjR6h4jJkaQhRkSgP+6x4g2gizMkICwxsQI6tB+huR0OvPy8mSnALS0otDNxAjq0LuQTpw4sXTp0oMHD8oOAmimsroxY2NxUUWNO3vcssmDZccBhNB6ya6xsXHhwoUpKSmygwCaMc4BWvbA4NljUmVnAf5D40Jas2bNsGHDkpOTL168KDsLoIeiipo5eeWz01J5wCsUpOuS3ccff1xYWLhs2bIO3rN+/fph/+Z0Ok3LBiiosrpxTl75nLzyzVnDWaMLH06n0/drcP369bLj+KHlDKm2tnbx4sWrVq2Kj4/v4G3z5s1zOBympQKUtaLQvXyPe/kDg5kYhZvMzMzMzEzjdU5OjtwwfmlZSGvXro2Jibl8+fLOnTtPnz595cqVgoKChx56SHYuQDk8Ug8a0bKQ4uLiYmNj33zzTSHE+fPnm5qa8vLyKCSgNd+RdLPTUlmjgxa0LKSFCxf6Xr/00ksXL1787W9/KzEPoJrcwxfm5JWzRge9aFlIbURG6ro1Awg6Tl6AvrQvpCVLlsiOAKjCuMGINTpoirkFYAVFFTURC/YLITh5AfrSfoYEhDnW6GAZFBKgK/bRwWJYsgO0ZBzULVijg4UwQwI0w72usCoKCdCGb42Og7phSSzZAXpovUZHG8GSmCEBqjOeGTEo4Rbv2omyswAhRCEB6vJdLtqcNZwt3bA8CglQEVu6EYYoJEAtRhXx+CKEITY1AArx7Vzwrp3IxAjhhhkSoATfzgXuLkLYopAAydi5ABgoJEAadi4ArVFIgAStq4idC4CBTQ2A2TgXFbghCgkwz4pCN4/RA26GJTvADLmHL6zY42YTHdABCgkILWM/txCCTXRAxygkIFR8+7l5WgQQCAoJCD5fFbGfGwgchQQEU2V144o97qKKGqoI6CwKCQiO1lXErUVAF1BIQHdxlysQFBQS0HVUERBEFBLQFVQREHS6FlJDQ8OOHTvcbndKSkpmZmZycrLsRAgXVBEQIloWUktLyw9+8IPq6ur09PT9+/dv3rz5L3/5S//+/WXngsVRRUBIaVlIH3300alTp/bu3ZuamurxeO6///4DBw48/vjjsnPBsqgiwARaFtKtt976ox/9KDU1VQgRHR0dGRkZGxsrOxSsiSoCTKNlIaWnp6enp1dXV2/YsOHAgQPjxo2bOHFi+7c5nU6n02m8djgcmZmZ5saE3rivCBbgcrkWL15svPZ4PPPmzZObp2NaFpLh+vXrvXr1Sk1NLS8vLykpGTNmTJs32O12h8NhvLbZbKYHhK6oIliGzWbbunWr8To/P19uGL+0LKSGhgYhRFJS0qJFi4QQP/zhD1977bX2hWSz2eghdErrM+ioIliAXr8DtSykF1544fjx4++++67x49ChQ//2t7/JjQTd+R4SwRl0gCxaFpLdbt++ffsf//jHadOmffbZZzt37uT6ELrMeHSeEIKHRAByaVlIU6dO/eyzz9atW7dmzZrIyMiHH374F7/4hexQ0M+KQnfukQuCKgLUoGUhCSEWLlz47LPPVlVVJSQk9OrVS3Yc6MTYyb18j3vC0Hie4gqoQ9dCEkJERUWlpKTITgGd+Kpo+QOD3dnjBiXeIjsRgP/QuJCAwLWuIu/aG9y1BkA6CgkW1/qmIqoIUBmFBMvybZ/jpiJACxQSrMZ3+pxg+xygFQoJ1tF6+9yBn41mzwKgFwoJVtDmTG6qCNARhQS9FVXUrCh0c/ocYAEUErTU+kIRp88B1kAhQTNcKAKsikKCNto8pogqAiyGQoIGfKegcqEIsDAKCeryrc4NSryFO4oAy6OQoCJW54AwRCFBIW32zrE6B4QVCglKYHUOAIUEyVidA2CgkCAHq3MA2qCQYLbWz8rjzlYAPhQSTNJmSsSz8gC0QSEh5Fof9sOGBQA3QyEhhFqfsMCUCEDHKCQEH3u4AXQBhYRganPoHBsWAASOQkIQMCUC0H0UErplRaG7qKLG98BWpkQAuoxCQle0nhLxwFYAQaFrIV27dm3nzp1///vfk5KSpk2bNmDAANmJwkL74xWYEgEIFi0LqaWlZebMmefOnZswYcK77777yiuv5OfnDxo0SHYuK+MqEYBQ07KQ9u/ff/z48d27dw8ZMqShoeHBBx/cvn37woULZeeyII5XAGAaLQvp0qVLaWlpQ4YMEUJER0enpqbW1NTIDmU1xiHcuYcvLH9g8Oas4ROGJshOBMDitCykrKysrKws4/WRI0dKSkqefPLJ9m9zOp0ul8t47XA47Ha7eRG11Wa3AlMiQGsulysnJ8d47fF4MjMz5ebpmJaFZPB6vdu2bXv55ZenTJkyderU9m+w2+3Tp083XttsNnPT6YcN3ID12Gw2h8NhvM7Pz5cbxi9dC+nLL79csGBBeXn54sWLs7KyIiIi2r/HZrMxK/KLDdyAhdlsNt9fxw8dOiQ3jF9aFlJDQ8PMmTNTUlLef//9/v37y46jJXYrAFCNloX09ttvf/XVV+vWraurq6urqxNCxMXF9evXT3YuPeQevvBRRS27FQCoRstCOnr0aH19feurc7NmzcrOzpYYSX3sVgCgOC0LybdpBH5xtgIAXWhZSAgES3MA9EIhWQ1LcwA0RSFZBEtzAHRHIWmv9Q2tLM0B0BeFpCtuaAVgMRSSZrhEBMCqKCQ9cIkIgOVRSKprvXubJ+MBsDAKSVEszQEINxSSWtr0EEtzAMIHhaQELhEBAIUk2YpCd2VNI5eIAIBCkoNLRADQBoVkKnoIAG6GQjIDl4gAwC8KKYSMHuKgOQAIBIUUEr6tChOGxj81JpWtCgDgF4UUTFwiAoAuo5CCgB4CgO6jkLqOrQoAEEQUUqexVQEAQoFCCpSvh4oqapc/MJitCgAQXBSSf0UVNR+drvVdIjrwzGjZiQDAgiikm2KrAgCYiUJqiwdAAIAUFNK/sGUOAOQK90JiyxwAKELvQiorK9u3b5/D4ejsP2j0kHG6z+wxqWyZAwDpNC6kqqqqlStX1tXVdaqQ2myZY6sCAChC10KaPn36yZMnW1pa7rrrrkDez5Y5AFCcroW0atWqa9eu7dq168iRIx28jS1zAKALXQtpxIgRQoijR492UEgLygYsyP5L3LmDT9x2/dknfmC3DzYxIADI53K58vPzfa8zMzPl5umYroUUiKm9T84YP1KI/xVC2Gw22XEAwGw2my09PV12ikBZuZDGD41X/K8DABBSNpvN92vw3LlzcsP4FSk7AAAAQlBIAABFaF9IERERsiMAAIJA70KaO3furl27ZKcAAASB3oUEALAMCgkAoAQKCQCgBAoJAKAECgkAoAQKCQCgBAoJAKAECgkAoAQKCQCgBAoJAKAECgkAoAQKCQCgBAoJAKAECgkAoAQKCQCgBAoJAKAECgkAoAQKCQCgBAoJAKAECgkAoAQKCQCgBAoJAKAECgkAoAQKCQCgBAoJAKAECgkAoAQKCQCgBF0LqaWl5Z133nn++ec3btx49uxZ2XFuzOl0yg3gcrk8Ho/cDNL/EKQH8Hg8LpdLbgbpfwgMRRUCqE/XQpo3b97zzz9/5cqVDz744NFHH/38889lJ2rL4/Hk5OTIzZCTkyP3t4DL5crPz5cYQCjwh5Cfn3/o0CGJARiKgqGoCS0L6cSJE/v371+7du3q1at37NiRnJz82muvyQ4FAOgWLQvp2LFj0dHREyZMEEL06tVr4sSJx44dkx0KANAtPWQH6Irq6urk5OTIyH+16YABA6qrq9u/zeVySVypMObmcpdKPB6P3PUij8ejyHqRzWaT9enGBSSGIkNRKDAU7Xa7rE8PRITX65WdodN+97vfvffee3v27DF+3LJly4YNG9qPdemDDwCU4nA4ZEfoiJYzpN69e9fX1/t+rKuru+WWW9q/TfE/egBAa1peQxo4cOBXX31VVVVl/FheXj5w4EC5kQAA3aRlIY0bN65Pnz4rV670eDzvvffehx9+OGnSJNmhAADdouU1JCHE3r17ly5dWltbGxkZ+fDDD//617/u0UPL5UcAgEHXQhJCeL3eqqqq2NjYG15AAgDoReNCAgBYiZbXkAAA1hO1fPly2RmCrKWlxel05ufnl5aWDhgwoG/fvtI/8dq1a++8847T6SwrK7v99ttjYmLMz+DjdDqPHTs2cuRI8wMUFxfv2LHj+PHj/fv3D8X3EuAX8c4775SWlqakpMTHxwc9Q3tlZWV5eXnp6ekmfJbfTzRhKPrN4BOioRhIgFAPRb8ZTB6Kpn3v3WTBGZL55652/IktLS0zZ85ct25dfX39u++++9BDD1VWVpqcwefEiRNLly49ePCg+QG2bds2a9as0tJSY1ek2+02P8PcuXPXrFnT2NhYUFDw6KOPnjp1KugZ2qiqqlq5cmVhYWGoPyiQTzRnKHacwSd0Q9FvABOGot8MZg5F0773IPBaS2lp6d13371v3z6v13v16tVJkyb98pe/lPuJe/bs+eY3v1lRUeH1euvr67/73e+uXr3a5AyGhoaGKVOmZGRkzJ8/3+QAV65cGTlyZF5envHjjBkzXn75ZZMznDlz5u67796/f7/X662vr//2t7+9bt264GZoIzMzc/jw4XfffffDDz8c0g8K8BNNGIp+MxhCNxT9BjBhKPrNYPJQNOd7DwqrbZVuf+7qxx9/LPcTL126lJaWNmTIECFEdHR0ampqTU2NyRkMa9asGTZsWHJy8sWLF00OUFRU1Lt378cee+zMmTPNzc1btmzxHUVoWoa+fftGRUU1NjYKIZqampqampKSkoKboY1Vq1Zdu3Zt165dR44cCekHBfiJJgxFvxkMoRuKfgOYMBT9ZjB5KJrzvQeF1ZbsAjx31cxPzMrK2rp1q/H6yJEjJSUlQb+cEMj/648//riwsHDZsmXB/egAA5w9ezYxMfGJJ56YPHnylClTHnnkkTNnzpicIS4ubtGiRc8999yPf/zjyZMnjxgxYtq0acHN0MaIESNGjRpl5mGaHX+iCUPRbwYR4qHoN4AJQ9FvBpOHojnfe1BYrZCuX7/e+sfIyMiWlhYVPtHr9b711ltPP/30lClTpk6danKG2traxYsXr1q1KkTXTv0GuHz58hdffDF69OiSkpJ9+/Y1Nze/9NJLJme4cuXK9u3bExISbDbbnXfeWV5e/sknnwQ3gxZCOhT9CvVQ9MuEoeiXlKEo93sPkNWW7AI8d9XkT/zyyy8XLFhQXl6+ePHirKysiIgIkzOsXbs2Jibm8uXLO3fuPH369JUrVwoKCh566CHTAtx6662RkZELFizo2bPn7bff/uSTT27YsCFYnx5ghqKiojNnzuzduzclJUUIMX/+/FdffTXcDp0K9VD0K9RD0S8ThqJf5g9F6d97gKxWSL5zV401WRPOXfX7iQ0NDTNnzkxJSXn//ff79+8vJUNcXFxsbOybb74phDh//nxTU1NeXl4Qfwv4DWCsX/umLM3NzUE/6slvhnPnzvXs2TMhIcH48Z577jl69GhwMyjOhKHoV6iHol8mDEW/TB6KKnzvAbLakp35567e7BOzs7ONf+vefvvtr776asmSJXV1dW632+12X7p0yeQMCxcu3P5vjzzyyNixY7ds2WJmgPHjx8fExKxataqmpqa0tHTLli333XdfEAMEkiEtLa2urm7t2rXnz58vKSnZtm3bcRFO6AAAAXBJREFU2LFjg5tBTWYORb8ZQj0U/QYwYSj6zWDyUJT4vXeW1WZI8fHxq1evXrp06cSJE41zV2fMmCHlE3ft2lVfXz9jxoyjR4/W19dnZmb6/pFZs2ZlZ2ebmaHN+4O+rchvgNjY2E2bNmVnZ997771RUVEZGRmLFi0yOYPdbl+yZElOTk5ubq4QYvz48cH9Fjpg/gpJ6080cyj6zdDmPaHY4dZxABOGot8MJg9Fk7/37rDmWXZe089dNf8TFcwQSIDa2tro6OjevXvLynD9+vWqqqqYmJg+ffqEKAO0EOqh6BdDsT1rFhIAQDtWu4YEANAUhQQAUAKFBABQAoUEAFAChQQAUAKFBABQAoUEAFAChQQAUAKFBABQAoUEAFAChQQAUAKFBABQAoUEAFAChQQAUAKFBABQAoUEAFAChQQAUAKFBABQAoUEAFAChQQAUAKFBABQAoUEAFAChQQAUAKFBABQAoUEAFAChQQAUML/A+ABvc+GNBfUAAAAAElFTkSuQmCC\n", "text/plain": [ "" ] @@ -178,7 +178,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 3, "metadata": {}, "outputs": [ { @@ -244,7 +244,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 4, "metadata": {}, "outputs": [ { @@ -275,7 +275,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 5, "metadata": {}, "outputs": [ { @@ -336,7 +336,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 6, "metadata": {}, "outputs": [ { @@ -406,12 +406,12 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 7, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGkCAIAAACgjIjwAAAACXBIWXMAAB7CAAAewgFu0HU+AAAAB3RJTUUH5AINFAAqCT+68wAAACR0RVh0U29mdHdhcmUATUFUTEFCLCBUaGUgTWF0aFdvcmtzLCBJbmMuPFjdGAAAACJ0RVh0Q3JlYXRpb24gVGltZQAxMy1GZWItMjAyMCAxMjowMDo0MvC8TjYAACAASURBVHic7d19XFR13v/xDyCC9wh4OxoIZqmZeQfdWEprauVWu5Xl5VpaupvmrlqraWpqptlW16PcLitvkiQ3u9FSs21JUcRKsJAsUZCbQRsgVIZIdBRn5vfH2d/sLCAiDJzvnHk9/zpzzpkzH3yMvPnenO/xczqdAgCA3vz1LgAAABECCQCgCAIJAKAEAgkAoAQCCQCgBAIJAKAEAgkAoAQCCQCgBAIJAKAEAgkAoAQCCQCgBAIJAKAEAgkAoAQCCQCgBAIJAKAEAgkAoAQCCQCgBAIJAKAEAgkAoAQCCQCgBAIJAKCEZnoXUIMFCxaUlZVd6ujs2bMjIiKash4AQBPwczqdetfwX86ePTtw4MBaqvrwww/79+/flCUBAJqAci2k7OxsLY369evXrl276ieEhYU1eVEAgEanXCBlZWVpG6+//rrJZNK3GABAk1FuUoMWSG3atCGNAMCnKBdI2dnZInLttdfqXQgAoEkp2mXXu3dvESkpKcnLy2vTpk1UVFSLFi30Lg0A0IjUCqSioqLy8nIRsVqto0ePzs/P1/b7+/v369dv4cKF/fr107VAAEBjUWva9549e/70pz9d6qi/v//s2bMfe+yxulwqLS3Nc3UBgEGYTCZlR+jVaiG5ptj5+/uPHTv2lltu6dy587Fjx9auXZuXl+dwOF599dWhQ4f26tWr9uukpaVNmDCh8esFAK9R3P+RypZhe6YJgVQnpaWlISEhTqfzpZdeiouL03Zef/31Y8aMmTlzZlJS0sWLF5ctW/buu+/W5WrTp0+PjY1tzHqBy7BYLHPnzuWrCBXMTyn/6occvauojVqBNG/evHnz5lXfHxQUtHTp0rS0tDNnzmRkZDgcDn//y88PjI2NjYmJaYQygbrSuo75KkIF3fKOiNqBpNy070sJDw8fMGCAiNhstp9++knvcgDAy5hLz+ldwmV4TSCJSNeuXbWN48eP61sJAMDjFOqyKy8vX7FihcPhuPnmm++5557qJ1gsFm2jU6dOTVsaUE8mkykhIYH+OqAuFAqkoKCgrVu3Xrx4MSsrq3oglZeXHzp0SEQCAwN79OihR4HAFVN5ii2gGoW67IKCgrQFGjIzMzdu3Oh+yOl0rlixQrtndvjw4c2aKZSjAOAtAs+e1ruE2igUSCLy+OOPaxtLly6dM2dOampqQUFBcnLyI488snnzZhFp0aLFs88+q2uNAIBGoVZT484778zIyIiPj3c6nVu3bt26dav70bZt2y5fvtw1tQEAYCRqtZBEZN68eWvXrtX67lzatWs3atSoHTt23HHHHXoVBgBoVGq1kDS33nrrrbfeqncVAIAmpVwLCQDgmwgkAIASCCQAgBIIJACAEggkAIASCCQAgBIIJACAEggkAIASCCQAgBIIJACAEggkAIASCCQAgBIIJACAEggkAIASCCQAgBIIJACAEggkAIASCCQAgBIIJADwCWarTe8SLoNAAgAogUACAF8ReO603iXUhkACACiBQAIAKIFAAgAogUACACiBQAIAKIFAAgCfYC61BZ4t1buK2hBIAAAlEEgAACUQSAAAJRBIAAAlEEgAACUQSAAAJRBIAGB85lKbiDRjcVUAAC6LQAIAKKGZ3gXUidPpdDgcIhIQEKB3LQCARuEFLSSHwzF+/Pg+ffo8+OCDetcCAF7JbD0nIoFnGUNqmDVr1nz33Xd6VwEAaFyqB9Lhw4dXrlypdxUAgEandCDZbLbZs2dfvHhR70IAwLtp074Vp3Qgvfzyy7m5uZ06derTp4/etQCA1wvkPqT6SUlJee+990Rk+fLlbdq00bscAEDjUjSQysrK5s2bJyIPP/zw0KFD9S4HANDoFA2khQsXnjx5snv37s8884zetQCA1ysotSk+51vUvDF2y5YtiYmJ/v7+L774YsuWLet9HYvFkpaW5nppMplMJpMnCgQA7+D6HfiT5YK+ldSFcoH0008/vfDCCyLyyCOPDBkypCGXmjt3rvvLhIQEAgmA70hLS5swYYK2Xdz/kWYtw/St57LUCiS73T579uyKioqoqKinnnqqgVebPn16bGys62VMTEwDLwgAXsRkMiUkJGjb81PKv/ohR996LkutQFqzZk16enpAQMDf/va3oKCgBl4tNjaWEALgs9zHKbrlHYm0/GTXt6DLUSiQjh49+ve//11EHnvssT59+tjt//mn01ZWdTqd2k4/Pz9/f0WnYwCAgsyl5/Qu4fIUCqTDhw9rizKsWbNmzZo11U/IzMzU7pD961//OmXKlKauDwC8ltlqa6F3DZdFOwMAfEJke9UjSaEW0qBBg5YtW1bjobVr1+bn53ft2vXJJ58UkRtvvLFpSwMANDqFAikyMjIyMrLGQ9u2bcvPz2/fvv0DDzzQtEUBgBGYS213RgXn6l1G7eiyAwAogUACAIPTnj0R2T5Y70Iug0ACAIPTnl8eGap6ICk0hlSLDRs26F0CAHgrr3g6n9BCAgAfERmq+rRvAgkADK6AFhIAQAVmq214dIjeVVwegQQAxqd+f50QSABgeHtyrXqXUCcEEgAYn/o3IQmBBACGZy61RSh/E5IQSABgbP9epoFAAgDoSxtAUv/ZE0IgAYAvoIUEANBZcm6ZV6SREEgAYHjDo9vrXUKdEEgAYGTechOSEEgAYGzmUtswb1g3SAgkADAwb3nwhIZAAgDD0vrrGEMCAOiswHvuihUCCQAMzGy1TRzSRe8q6opAAgDD8qIpdkIgAYCBedEUOyGQAMCo4g8UiffMaBACCQCMzVtmNAiBBABGlZxb5kUzGoRAAgCj8q4ZDUIgAYBRedeMBiGQAMCQvG5GgxBIAGBI2mOQvGhGgxBIAGBIe3Kt3tU8EgIJAIzHXGozl9oeHdJZ70KuDIEEAEbjXYt8uxBIAGA0XncHkoZAAgCjiT9Q5F0TvjUEEgAYijdO+NYQSABgKFp/nXdN+NYQSABgKF7aXycEEgAYiff21wmBBABG8u6BIi/trxMCCQCMZE9umZf214lIM70LqIHdbt+wYcPXX3+dlZVVUVHRtm3b7t2733vvvffdd19AQIDe1QGAory6v04UDKTCwsJZs2ZlZGS49pw5c6awsDA1NXXdunX/+Mc/QkK8NfwBoFEtScz33v46UbDLbuHChVoahYWFPfTQQ0888UTv3r21Q7m5uU8//bTT6dS1QABQUfyBIm9cv86dWi2k5OTkffv2iUivXr3WrVvXsWNHEZk1a1ZWVtb//M//nDlzZt++fWazuUePHnpXCgBqefdA0fDoEO/trxPVWkh79uzRNubPn6+lkeaaa64ZP368tp2Zmdn0hQGAysyltj25ZY964fp17tQKpOzsbBFp27btjTfeWOVQp06dtI2ioqKmLgsA1LYkMV9EvHFBVXdqddn17NkzPDzcZDJVP5Senq5t3HzzzU1bFACoLv5A0eKRXj+WoVYgLVmypPpOp9P5/vvvf/bZZyJy1VVX9enTp45Xs1gsaWlprpcmk6nGqAMArzZp0xERWTSqhkBy/x2YmpradDXVi1qB5O7MmTNvvfXWqVOnMjIy8vPzRSQiImLVqlV1v8LcuXPdXyYkJBBIAIznUs2jtLS0CRMmNH099aZuIFVUVKxZs8Z9z4gRI9q3v4IJJNOnT4+NjXW9jImJ8VhxAKCGWppHJpMpISHB9dJisVT5M1016gZS69athw0b5nQ6LRZLXl6e0+lct27dP//5zw0bNnTv3r0uV4iNjSWEABiYudQWf6Bo/cO9azxaZZzCvftOTWrNsnPXqlWr1atXr1mz5vPPP9+8efM111wjIoWFhTWOMwGADzLG5DoXdQPJXd++fVetWtWqVSsRSUlJKS4u1rsiANDZnlxrLc0jb6RQIFmt1k2bNm3atCkvL6/60W7durluTjKbzU1aGQCoZ8m/8odHhximeSRKBVJeXt6iRYsWLVq0ffv2Gk8IDw/XNiorK5uwLgBQTvyBoj25ZTXOZfBeCgVSdHS0tvH111/XeML333+vbfTt27eJagIAJU3adGTikC5evXJddQoFUkhISOfOnUUkIyPjk08+qXJ03bp1R48eFRGTyRQaGqpDfQCghrhV6SJipNEjjVrTvufNmzdjxgxt4/DhwyNHjuzUqdOJEyfef//9nTt3auc8/fTTutYIAHrak2vdk1u2e9oAvQvxPLUCafTo0ffff//mzZudTmdCQoL7LV2axx9//O6779alNgBQwaRNR7z9MROXolCXnWb58uWrV6+++uqr/fz8XDv9/PyGDBmycePGOXPm6FgbAOgrblW6udS2/uG6LunpXdRqIWmGDRs2bNgwvasAALVoM+t2TxvgvQ8pr51yLSQAQHXmUpshZ9a5I5AAwAtM2pQZGRpsvJl17lTssgMAuFvyr3yjzqxzRwsJAJS2J9e6ODF/97QBBu6s0xBIAKCuPbnWuFUHjTrPuwoCCQAUZS61aWm0e9pAvWtpCgQSAChKm8jgI2kkBBIAqCluVbrZats91VfSSJhlBwAKiluVbux7YGtUz0AqLCy0Wq3Nmzfv0KFDSEiIZ2sCAF82adMRLY18YSKDu/oE0qOPPrp//37Xy1atWplMpjlz5vTr149wAoCG0NpG6x/u7WtpJPUIpKSkpP3795tMpmbNmpWXl1ut1oqKiuzs7MmTJwvhBAAN4Oqp88E0knoE0v/+7/++//77Awf+e5zt/PnzFovlzTff3L9/f0lJSfVwmjdvXp8+fQgnAKiFudQ2aVOmL6eR1COQHA5Hz549XS+DgoKioqJefvllEamsrLRYLKtXr/7qq6+Ki4u1cJo0aZKItGrVKjIycsuWLR4sHQCMQUsjs9Xmy2kk9Zj2HRMTY7VaazwUGBgYGRm5fPny5OTkzMzMxMTEcePGaU8lr6ioOHz48IMPPtjQegHAWMyltrg3081Wm2+OG7m74hbSzJkzH3744S+++KL20wICAiIiIhYvXrx48WK73V5YWLhhw4Z77rmnvnUCgAGZS209ln0dGRqcP/9mvWvR3xW3kEJCQuLi4t588826vyUgIKB79+7z58/v16/flX4cABjVnlxrj2VfD48OIY009Vmp4ZlnnjGbzQsWLPB4NQDgI1yrpvrOykCXVZ9AevbZZz/99NOPPvqof//+M2bMMJvNlZWVHq8MAIwq/kARaVRdfe5D2rx5s7Zts9m++OILbTypY8eOsbGx06dP7969e0BAgIfLBACjWPKv/MWJ+ROHdDH241/roT73IW3ZsqV3795lZWU5OTlLly61WCwVFRUlJSXbt2/fvn27iHTu3Pmuu+565plnGqFgAPBikzYdiT9QtHhkj0Wjeuhdi3KuuMtOW6PB398/NDQ0JiZm+/bt6enpqampCQkJvXr1atWqlYgUFxe/8847BQUFjVAwAHiruFXp8QeK1j/cmzSq0RW3kN5+++0hQ4b8/ve/nzJlSnh4uLYzJCRECycRKSsry87OXrduXUREhIeLBQCv5ePLAtVFfSY1HDhwYNCgQWPHjh08eHBWVlaVo1o4vf32254oDwC8nnazEWl0WfV8/MTIkSNHjhzpcDj8/XnEHwBckjaFQbv11aceblQPDXpAH2kEAJfiWi+VKQx1xBNjAcDzXA0juunqjkACAE+iYVRvBBIAeEz8gaJJm47QMKofAgkAPMDVMGIJhnojkACgobSVUmkYNRCBBAD1Zy61vXugaHFiPiulNhyBBAD15GoYMX/BIwgkAKgPbWI3DSMPIpAA4MqYS21xb6abS200jDyLQAKAK8BSQI1H9UByOp1+fn56VwEA3PHa6BQNpE8//TQ5OfnIkSMFBQXh4eFRUVEjRowYN25cs2aKFgzAwFxT6ZjY3aiU+/1utVrnz5+/a9cu156SkpKSkpL9+/cnJCS8+eab0dHROpYHwKe4RxENo8amXCDNnj07JSVFRFq3bj1s2LBevXodP378s88+O3/+fEFBwYwZMz766KMWLVroXSYA43MNFxFFTUOtQPrmm2+0NAoPD1+/fn2vXr20/VOnTv3DH/5QXFx87NixDz74YOLEiXpWCcDotCgSEaKoKakVSB988IG2MWfOHFcaiUj37t0XLVo0depUETl06JA+xQHwAXtyrZM2HTGX2oZHh6x/uA/z6JqSWoFUVFQkIq1bt77rrruqHLrpppu0jSNHjjR1WQB8gGsSHVO69aJWIBUXF4tI165dAwMDqxyqqKjQNlq1atXUZQEwNHOpbUlifvyBIibR6UutQHrjjTd++eWXtm3bVj+0f/9+bcO9Kw8AGoJJdEpRK5D69etX4/7y8vKXXnpJ2x42bFgdr2axWNLS0lwvTSaTyWRqYIUAjMFHosj9d2BqaqqOldSFWoFUo8LCwj/+8Y8lJSUiEhMTM2rUqDq+ce7cue4vExISCCQA4jOT6NLS0iZMmKB3FVdA9UD64osvlixZUlpaKiJRUVGvvPJK3d87ffr02NhY18uYmBjP1wfAq8QfKFqSmO8j66KaTKaEhATXS4vFUuXPdNWoG0inTp1avHjxl19+qb2MiYlZuXJl+/ZXMNgYGxtLCAHQuM/n3j11oC9MoqsyTuHefacmRQNp27ZtL7zwwi+//CIiwcHBM2bMmDhxor+/v951AfA+7vO5mUSnMhUD6eWXX167dq22PWLEiPnz53ft2lXfkgB4I/eZC+sf7j1xSBe9K0JtlAskVxq1bdt20aJFY8aM0bsiAN7H/dYiXxguMga1AikzM/Odd94RkfDw8A0bNrCwN4ArteRf+fHfFplLbUSR11ErkFasWOFwOETk//7v/0gjAHXn6p0TEd+ZtmAwCgXS2bNnDxw4ICItWrQ4evTo0aNHazytW7duQ4cObdrSAKiryi2ujw7pQhR5KYUC6ccff9SaR+fOnVu0aNGlTvvNb35DIAEQBooMR6FAOnbsWF1Oa968eWNXAkBxDBQZkkKBNH78+PHjx+tdBQB1VRkoWv9wb24qMhKFAgkALsU9ihgoMioCCYDSGCjyHQQSAEUxUORrCCQAanHvnWPJH59CIAFQBQNFPo5AAqA/BoogBBIAHWlNIgaKoCGQAOiAgSJURyABaDo0iVALAglAU3CNEonI4pE9hvUMYZEFVEEgAWhEVbrmaBKhFgQSgEax5F/5e3Kte3LLeCoE6ohAAuBJNIlQbwQSAA+oPluBJhGuFIEEoEHcm0QTh3QZNjKECdyoHwIJQH0wgRseRyABuDLxB4qSc8u0ZX4mDu5C1xw8hUACUCfMVkBjI5AA1IbZCmgyBBKAGmg5pN1IJMxWQJMgkAD8h5ZDZqtNW+OHrjk0JQIJgAhDRFAAgQT4tOo5xBAR9EIgAb6IHIKCCCTAh1SfMsdjIKAOAgkwvio5NHFwF3IICiKQAMOqMnV7eHTIxMFdmKoAZRFIgAG5VvcRpszBexBIgHEwdRtejUACvB5T5mAMBBLgrcghGAyBBHiZPbnW5Jwy9xxiyhyMgUACvEP1HKI9BIMhkAB1aZ1yIkIOwRcQSIByalxymxyC4RFIgCqq3MfKvG34Gi8IJLvdLiIBAQF6FwI0CnII0KgeSCkpKZMnTxaRgwcPtmzZUu9yAI8hh4AqVA+k999/X+8SAE+qvr4cOQRo1A0kh8Px4osv7tq1S+9CAA+ost52ZHvaQ0BVygXSDz/8cOjQodzc3MTExJMnT+pdDtAg1Z/7EBEaPHFIF73rAlSkXCC9/PLLqampelcBNAg5BNSDcoEUGhrauXNn18tffvnl3LlzOtYD1JG51Ga2nnNfTIHn4AFXRLlAeu2119xfzpkzZ+vWrXoVA1xWjZPlyCGgHpQLJMAr1JhDLKYANISRA8lisaSlpblemkwmk8mkYz0wACbLwbu4/w5Uf3jeyIE0d+5c95cJCQkEEuqBwSF4qbS0tAkTJuhdxRUwciBNnz49NjbW9TImJkbHYuB1GByCtzOZTAkJCa6XFoulyp/pqjFyIMXGxhJCuFIMDsEwqoxTuHffqcnIgQTUHYNDgO4IJPguBocApRBI8DkMDgFqIpDgKxgcAhRHIMHgGBwCvAWBBAPSQshstcUfKBIGhwAvQSDBOOiUA7ya6oHUvHlzvUuA6vbkWt1nytEpB3gp1QPphRdeeOGFF/SuAsqp3inHTDnA26keSIA7OuUAAyOQ4AWqdMoNj26/OLo9nXKAwRBIUBS3rwK+hkCCWtxvGxI65QBfQiBBf1oIiYj7mnIiQqcc4FMIJOiGTjkA7ggkNDVuGwJQIwIJTYHGEIDLIpDQiJihAKDuCCR4WI0zFCJCgycO6aJ3aQCURiDBM+iUA9BABBLqr/ojwJmhAKDeCCRcMRpDABoDgYS6Yro2gEZFIKE2NIYANBkCCTVgujaApkcg4d+qP/Ju4uAuNIYANBkCydfRGAKgCALJF7G6NgAFEUg+hBkKAFRGIBlcjY2h4Tz/G4B6CCRjojEEwOsQSMZhLrXtybUWlNpcjaHh0e0X0xgC4CUIJK9HYwiAMRBIXql6Y4iFfAB4OwLJm9AYAmBgBJLqeMQDAB9BICmKxhAAX0MgKYTGEABfRiDpj8YQAAiBpJcqjSERGR4dwqqmAHwZgdSkaAwBwKUQSI2OxhAA1AWB1FhoDAHAFSGQPInGEADUG4HkATSGAKDhCKT625NrTc4pcz38m8YQADQEgXRlqjeGJg7uQmMIABpO0UDau3fvxx9/nJOTc/LkycDAwJ49ew4aNGjKlCktW7bUpZ4qjSGtU47GEAB4kHKBZLfbFyxYsGXLFvedp0+fTk1N3bp168qVK6+77rqmqYTGEAA0JeUCKT4+3pVGt956a//+/UtKSpKSkk6dOmWxWGbNmrV9+/bg4EZsl9AYAgBdqBVIZWVlK1euFBE/P79ly5bdf//92v7p06c//vjjx44dO378+Pr166dOnerZz6UxhMaTlpZmMplMJpPehQCqUyuQkpOTbTabiMTFxbnSSEQ6deq0cOHCRx55REQSExM9FUg0htDY0tLSJkyYkJCQQCABl6VWIKWkpGgbY8eOrXIoNjY2IiKioKAgMzPz9OnTYWFh9fsIGkMAoCa1AqmgoEDbuOGGG6ofveGGG7QTjh8/fqWBRGMIABSnViAVFhaKSJs2bdq3r6G9EhERoW1YLJYBAwZc9mrm0nP//Fe+qzEUePb0iK6OqYNChvfULn6yJOdkieeKB6pLTU0VEYvFkpaWpnct8HXat1FlagVSRUWFiNSYRu77tdNqdzas10Nf2kXyA8+eDvvpm7Yn9geeO50rkiuyzoMVA3Uwd+5cvUsAvIBagXThwgURad68eY1HAwMD3U+rhclk2vzawrNhV7c8fUyktUiEyMOeLRUAvFFMTIzeJVySWoEUGBhot9u1iXbVORwObcPpdNZ+nf/Mso1W958eAODOX+8C/kvtSeNqGLmaSgAAw1ArkIKCguTSQ0Rnz551Pw0AYCRqBVKnTp1ExGq1lpWVVT+al5fnfhoAwEjUCiTX3ezZ2dnVjx47dkzb6NatW9PVBABoEmoF0uDBg7WNbdu2VTmUnZ199OhREQkPD7/qqquaujIAQCNTK5Buv/12bWPz5s0//vij+6GlS5fa7XYRiYuL8/Pz06E4AEBjUiuQoqOjR48eLSIOh2PatGnbtm0rKCjIyMiYOXOmdqN7cHDwlClT9C4TAOB5fpe9p6eJnT59+oEHHtDWEKrCz89v4cKF48ePb/qqAACNTa0WkoiEhYVt37593LhxLVq0cO308/Pr1avXe++9RxoBgFEp10ICAPgm5VpIAADfRCABAJRAIAEAlEAgAQCUQCABAJRAIAGAr7Db7dqSN2pS6wF9Dbd3796PP/44Jyfn5MmTgYGBPXv2HDRo0JQpU1q2bKl3aTCUhn/TFixYUOOq9prZs2dHRER4qFhARCQlJWXy5MkicvDgQTV/JRrnPiS73b5gwYItW7ZUP2QymVauXHndddc1fVUwHo98086ePTtw4MBa/vd9+OGH/fv3b1ChwH+bNm3arl27ROFAMk4LKT4+3vU74tZbb+3fv39JSUlSUtKpU6csFsusWbO2b98eHBysb5EwAI9807Kzs7U06tevX7t27aqfEBYW5vHK4bMcDseLL76opZHKDNJCKisrGzZsmM1m8/PzW7Zs2f3336/t//nnnx9//HHtQUozZ86cOnWqrmXC63nqm/bBBx8899xzIpKUlOR6DBjgWT/88MOhQ4dyc3MTExNPnjzp2q9sC8kgkxqSk5NtNpuIxMXFuX5HiEinTp0WLlyobScmJupTHAzEU9+0rKwsEWnTpg1phMbz8ssvP//88xs3bnRPI5UZJJBSUlK0jbFjx1Y5FBsbqw0OZ2Zmnj59uqkrg7F46pumPRP52muvbYQagX8LDQ3t7MZ9xWo1GWQMqaCgQNu44YYbqh+94YYbtBOOHz9O1zwawlPfNK2F1Lt3bxEpKSnJy8tr06ZNVFSU+r8y4EVee+0195dz5szZunWrXsXUhUECSXt+Ups2bdq3b1/9qGv6rMViGTBgQJNWBmPxyDetqKiovLxcRKxW6+jRo/Pz87X9/v7+/fr1W7hwYb9+/TxfOqA8g3TZVVRUiEiNvyPc92unAfXmkW+a1jwSke3bt7vSSEQcDsf3338/duzYd955xzPlAl7FIC2kCxcuiEjz5s1rPBoYGOh+GlBvHvmmuQLJ399/7Nixt9xyS+fOnY8dO7Z27dq8vDyHw/Hqq68OHTq0V69eHq0dUJ1BAikwMNBut2vTn6pzOBzahjHmuENHHvmmlZaWhoSEOJ3Ol156KS4uTtt5/fXXjxkzZubMmUlJSRcvXly2bNm7777r2eIBxRmky672//+uP1ddf8AC9eORb9q8efNSU1PT0tJcaaQJCgpaunRp69atRSQjI8MVb4CPMEggBQUFyaU77s+ePet+GlBvjf1NCw8P12ZD2Gy2HR6g0wAAEFVJREFUn376qX4XAbyUQQKpU6dOImK1WmtcrTIvL8/9NKDemuCb1rVrV23j+PHj9b4I4I0MEkiu2921+w2r0BZ0EZFu3bo1XU0wooZ/08rLy5999tm5c+du27atxhMsFou2wd9P8DUGCaTBgwdrG9X/k2dnZx89elREwsPDr7rqqqauDMbS8G9aUFDQ1q1bP/nkk/Xr11c/Wl5efujQIREJDAzs0aOHx+oGvIFBAun222/XNjZv3vzjjz+6H1q6dKn2QKq4uDg/Pz8dioOBXOk3bceOHZs2bdq0adPBgwe1PUFBQdoCDZmZmRs3bnS/gtPpXLFihXbP7PDhw5s1M8gkWKCOAhYvXqx3DR4QGhqak5OTk5PjdDqTk5PDwsKCg4PNZvOKFSuSk5NFJDg4+JVXXgkJCdG7Uni3K/2mTZ8+/dNPP92zZ0/btm2HDh2q7WzTps0XX3whInv37j1+/Hjbtm3tdvv333+/cOHCnTt3ikiLFi3eeuutNm3a6PRTwpi+/PJL7R64J554Qs0px8b5E+y55547dOhQYWHhzz//PHv2bPdDfn5+c+bM4fmb8IiGf9PuvPPOjIyM+Ph4p9O5devWKsuLtW3bdvny5a6pDYDvMEiXnYiEhYVt37593Lhx7stT+vn59erV67333hs/fryOtcFIruib5lrTocofpPPmzVu7dq3Wd+fSrl27UaNG7dix44477mi08uG7LrXCiDoM8oA+d06n02KxmM3mkJCQ6Oholk9GI/HIN+3XX3/Nz8//9ddfo6OjO3fu7PEiAS9iwEACAHgj43TZAQC8GoEEAFACgQQAUAKBBABQAoEEAFACgQQAUAKBBABQAoEEAFACgQQAUAKBBABQAoEEAFACgQSlJScnux5tB8DYjPM8JBhPcnLyH//4RxH59NNPqzypAYDx0EKCurTHqopI69at9a0EQBMgkKCur7/+WkSGDh3avXt3vWsB0OgIJCjKbDYXFxeLyOOPP653LQCaAoEERaWmpopIRETEzTffrHctAJoCkxqgv5ycnLy8vNLS0tDQ0KFDh7Zs2VJEvvrqKxEZN25cjW8pKipaunSpiEyaNGnIkCF1/KCMjIzVq1c3a9Zs+fLlBhiXWrZsmcViMZlM8+fPz8vLs9vtIhIVFRUQEFDLu86ePWuxWETEz8+vZ8+eTVQrUAcEEvRktVrnzJmzd+9e156EhISYmBiHw5GcnNysWbMHH3ywxjcuWbJk9+7dHTp0uO666+r+cT169EhLS/v111+7du06d+7chlavq7y8vA0bNojIhAkTRGT8+PGlpaUisnLlylGjRtXyxvT0dK0XtFmzZocPH26SYoE6ocsOelq0aJF7Grmkp6fbbLb777+/xnbM559/vnv3bhH585//3KJFi7p/XLt27R577DERSUhIyM/Pr2/VSvjoo4+0jYceesh9v9ZOArwRgQTdnD9/PikpSdu+55573njjjVdffbVPnz4isn//frlEf11FRcWyZctEpEePHg888MCVfujEiRNDQ0MvXry4fPnyBlWvq8rKyk8++UREbrjhhquvvlrvcgDPIJCgm+Li4srKShFp1arV888/f8cdd4wZM0ZrEu3fv3/AgAE13gz76aefnjp1SkQmT55c+2BJjVq2bDl+/HgR2bt375EjRxr6M+hk586dVqtVRMaOHat3LYDHEEjQjcPh0DYiIyPde94qKyvT09Or9ERpnE7ne++9JyJBQUGjR4+u3+f+9re/1Tbefffd+l1Bdx9++KGItG7d+q677tK7FsBjCCTooLCw0Gw2a3O9ROTChQtms9lsNv/0008ikp2dHRUVde+991Z/49dff52XlycicXFx9Z4mFxERcf3114vIjh07tMZWEzt//rz285aXl9d4QnFxsdlsLigoqPHoiRMnvvnmGxH57W9/e0VDaIDimGUHHUybNs29u+zYsWPaxLCIiIjExMS+fft+9tlnNb5x+/bt2sbdd9/dkALuvvvuQ4cOXbhw4bPPPps4cWJDLlUPR44c0dp/w4YNW716dfUTnnnmGW0UrcZF/D7++GOn0yn018FwaCHBm2h3y4rIwIEDG3Id19u1u530cvHixSs9wW63b968WUT69u2rTQABDIMWEnQwceJEi8VSXFysjYV06NBBm1DXrl27Wt5VWFhYWFionR8eHu5+6NSpU2+88caZM2duv/1217BKXl7e1q1bT5w44e/vf9NNN91///2u86+55pqAgAC73X7gwIHKysrAwECP/4yNZPfu3SdPnpRqs70BAyCQoIP77rtPRPLz87VA6tix45NPPnnZd6WlpWkbffv2dd/vcDj+8pe/PPXUU+fOnZs8eXJWVtasWbNef/31zMzMhx56aMqUKfv37//LX/6ya9euVatWaW8JCgqKjo7Ozs4+d+5cRkZG7Ws9mM3mX3/9te4/Xd++ff39G6vvQfsXa9my5ZgxYxrpIwC9EEjwGidOnNA2rrrqKvf9H3300ZAhQwYPHqxN23vnnXesVmuPHj3efvtt7YQRI0YMGTJk165d6enprs66qKio7OxsETl+/HjtgbR8+fLk5OS615mRkdFIcw2KiopSUlJE5O67727VqlVjfASgI8aQ4DW0pXFEpG3btu77d+7cqc3k1hLrwoULQUFBkyZNcj9H6wzUevyqXOT06dO1f66fn19DS/eQzZs3a6HLdAYYEi0keA1XILVp08a102635+fna4uEfvvttyJiMpn++te/VnmvtlBQs2b/+cLXPZAWLlw4derUutcZFBRU95PrzuFwaNMZrr32Wm3aOmAwBBK8huuuHffeKofD8be//U3b1qbM3XHHHVUi4dy5c1rv3LXXXuva6bqNyZVzl9KtW7du3bo1tPoG27dvn9bCq715pM0Ir8sJzZs391RtgEfQZQev4YqQc+fOuXYGBga6hoW0SeGxsbFV3qgFVVhYWGRkpGuntmqRKPl7ucZQ0aYzBAcH33PPPdWPulqNP//8c+0XLykpaXCBQKOghQSvERYWpm3UOOetoKDg1KlTAQEBt9xyS5VDBw4cEJEqD/pzXcR12UuprKys+xLafn5+De+yqx4qp06d0haivfPOO917LF2ioqK0lR0uu4q5awEI93gGVEAgwWu4kqPGFXe0AaS+fftWz4P09HQRuemmm9x3ui4SGhpa++c++eSTdZ9lFxAQcPDgwdozyTUp3NVKc3fhwgVtCSV3W7Zs0ULxUv11UVFR2iM5vv32W7vdXsuys99995224d6BCaiALjt4jY4dO2obxcXF1Y9q/XKDBw+usv/8+fPaY+iqHNJuLxWRDh06eLBIu93uWjT2Ulx39R4/frz60ffee6/KAg1Op1N7+lHPnj0vtURFdHS0tpGXlxcfH3+pj/7yyy+15BaRGhdTB3RECwlew5UomZmZ1Y9qA0gxMTFV9n/11Vd2uz08PDwiIsJ9v+siAwYMqP1zn3zyyTvuuKPudV52UKpTp07+/v4Oh6O4uHjbtm3uY0LffPON6+5dl9TUVC26apnOcNddd7311lvaaStXrgwMDBw/fnyVdlJSUtLixYu17dDQUG6thWoIJHiN6OjoTp06/fzzz8ePHy8vL3e/G8k1gDR06NAq79IGkKr01xUVFWnPE+ratWvXrl1r/9z+/fv379/fMz+DiIgEBASMGDEiMTFRRObOnfvdd98NHDjQarUeOnTo888/rz6jQZvO0Lx5c22Fixq1aNFixYoVf/jDHxwOh81mW7Zs2YcffnjLLbdERka2atXKbDZ///33+/btc53/3HPPXbavEmhiBBK8yS233LJlyxYROXz4sHvGaN1Q/fr1q74qnTaAVGWmw48//qhtVJ+S1zS0canz58/b7fZNmzZt2rTJdej2228PDQ39+OOPtZdWq/XLL78UkVGjRtW+1t+gQYOeffbZV199VZuFeOzYsWPHjlU/LTAwcMqUKXfeeacnfx7AExhDgm5cI/91n5Y2cuRIbUNrXrhoo0S33nprlfMrKyt/+OEHqbY6+K5du7SNuLi4KyvaQ6699trNmzdXWZSvY8eODz744Ouvv+7+qKetW7deuHBB6rY6w4QJE3bu3DlhwoRLLRcbFxe3Y8eOGTNmNKx8oFH4XfY2OkAdTqdz1KhRBQUF7du337dvn2vlhbKysu+//37YsGFVzk9KSpo6dWrHjh21JeA0Npvt5ptvrqio6Ny5c1JSUj2eg+5BJ0+ePHr0aFBQkMlkMplM1U/Yt2/foUOHmjdvPnny5LpftrKy0mKxnDhx4sSJEwEBASEhIRERERERETzQDyqjyw7exM/P79FHH33++eetVmtKSoqrfRMSElI9jeT/99fdeOON7juTkpIqKipEZNy4cfqmkYh06NCh9ml+Q4cOrT4wdlmBgYGRkZHcaQTvQpcdvMzvf//7kJAQEdm4ceNlT9YCqcov9Pfff19EgoODWaIUUAqBBC/TokWLmTNnikhKSorrCUk1stvtGRkZIuL+dIm9e/dq75o+fTrTzAClMIYE72O323/3u99lZWUNGDDAfX5aFbt3737iiSc6d+7sWmfB4XDcd999WVlZvXv33rx5s+79dWpKSUnR5vXFxMT85je/qT7s5HA4EhMT9+/f73A4brvtthEjRuhRJgyIFhK8T0BAwIIFC0Tk4MGDBw8evNRpWvPIfQm7PXv2ZGVlBQQELFu2jDSq7uzZs48++ugrr7xy5syZvLy8p59++rbbbtOeeeGSlpY2cuTI/fv333bbbSNHjiwuLp42bdqZM2f0qhlGQgsJ3kpb262WXPn2228/+OCDp556qkuXLtoeh8OhfeFJoxo99dRTQ4YMGTdunPYyPT19+vTpp0+ffuyxx5555hkR2b1793PPPbd69Wr3ZYdycnLeeeed5cuX61M0DCTAtZQI4F38/f1dq5TWqGvXriNHjnRfG9vPz++y7/JZWVlZ+fn5Tz75pGtPly5dbrzxxs8++ywtLS04OLht27Z//vOf33333Wuuucb9jaGhoVlZWWFhYe3bt2/yqmEotJAAiIisWrVq9OjRUVFRVfbv3LlTSymTyTRjxox77723+ntPnDjxxRdfTJkypSkKhXHxpyIAEZGCgoLqaSQiI0aM0O7JLS4urv6sKU337t3z8vIatz74AAIJgIiItgB5jYf+9Kc/iYjdbp85c2aN5zgcjkstVgTUHWNIAEREysrKLl682Llz5+qHnnvuuV69ep0+fTonJ6esrKz6ohhfffVVhw4drr766iapFIZFCwmAiMjIkSNrvKlr/fr1mZmZzz///N///vfg4OCNGzeuX7/e/YTKyspVq1YNHz68iQqFcdFCAiAiEhQUdPLkyW+//db1xMLz58+/9NJLiYmJ8fHx7dq169KlS//+/Xfv3r1r165ffvnluuuua9GiRU5OzqxZs373u9959pFR8E3MsgPwH//4xz/++c9/du/e3WazpaamjhkzZsaMGS1btnSd8PPPP7/yyis7duyw2+3NmjULCgqaPXu269YloCEIJAD/xW63p6amNm/efODAgZe6Z0s7p1mzZoMHD+a+LngKgQQAUML/A9I3FVI1xzGcAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGkCAIAAACgjIjwAAAACXBIWXMAAB7CAAAewgFu0HU+AAAAB3RJTUUH5AIbBzACiN4xkAAAACR0RVh0U29mdHdhcmUATUFUTEFCLCBUaGUgTWF0aFdvcmtzLCBJbmMuPFjdGAAAACJ0RVh0Q3JlYXRpb24gVGltZQAyNi1GZWItMjAyMCAyMzo0ODowMh0/yToAACAASURBVHic7d19XFR13v/xDyCC9wh4OxoIZqmZeQfdWEprauVWu5Xl5VpaupvmrlqraWpqptlW16PcLitvkiQ3u9FSs21JUcRKsJAsUZCbQRsgVIZIdBRn5vfH2d/sLCAiDJzvnHk9/zpzzpkzH3yMvPnenO/xczqdAgCA3vz1LgAAABECCQCgCAIJAKAEAgkAoAQCCQCgBAIJAKAEAgkAoAQCCQCgBAIJAKAEAgkAoAQCCQCgBAIJAKAEAgkAoAQCCQCgBAIJAKAEAgkAoAQCCQCgBAIJAKAEAgkAoAQCCQCgBAIJAKCEZnoXUIMFCxaUlZVd6ujs2bMjIiKash4AQBPwczqdetfwX86ePTtw4MBaqvrwww/79+/flCUBAJqAci2k7OxsLY369evXrl276ieEhYU1eVEAgEanXCBlZWVpG6+//rrJZNK3GABAk1FuUoMWSG3atCGNAMCnKBdI2dnZInLttdfqXQgAoEkp2mXXu3dvESkpKcnLy2vTpk1UVFSLFi30Lg0A0IjUCqSioqLy8nIRsVqto0ePzs/P1/b7+/v369dv4cKF/fr107VAAEBjUWva9549e/70pz9d6qi/v//s2bMfe+yxulwqLS3Nc3UBgEGYTCZlR+jVaiG5ptj5+/uPHTv2lltu6dy587Fjx9auXZuXl+dwOF599dWhQ4f26tWr9uukpaVNmDCh8esFAK9R3P+RypZhe6YJgVQnpaWlISEhTqfzpZdeiouL03Zef/31Y8aMmTlzZlJS0sWLF5ctW/buu+/W5WrTp0+PjY1tzHqBy7BYLHPnzuWrCBXMTyn/6occvauojVqBNG/evHnz5lXfHxQUtHTp0rS0tDNnzmRkZDgcDn//y88PjI2NjYmJaYQygbrSuo75KkIF3fKOiNqBpNy070sJDw8fMGCAiNhstp9++knvcgDAy5hLz+ldwmV4TSCJSNeuXbWN48eP61sJAMDjFOqyKy8vX7FihcPhuPnmm++5557qJ1gsFm2jU6dOTVsaUE8mkykhIYH+OqAuFAqkoKCgrVu3Xrx4MSsrq3oglZeXHzp0SEQCAwN79OihR4HAFVN5ii2gGoW67IKCgrQFGjIzMzdu3Oh+yOl0rlixQrtndvjw4c2aKZSjAOAtAs+e1ruE2igUSCLy+OOPaxtLly6dM2dOampqQUFBcnLyI488snnzZhFp0aLFs88+q2uNAIBGoVZT484778zIyIiPj3c6nVu3bt26dav70bZt2y5fvtw1tQEAYCRqtZBEZN68eWvXrtX67lzatWs3atSoHTt23HHHHXoVBgBoVGq1kDS33nrrrbfeqncVAIAmpVwLCQDgmwgkAIASCCQAgBIIJACAEggkAIASCCQAgBIIJACAEggkAIASCCQAgBIIJACAEggkAIASCCQAgBIIJACAEggkAIASCCQAgBIIJACAEggkAIASCCQAgBIIJADwCWarTe8SLoNAAgAogUACAF8ReO603iXUhkACACiBQAIAKIFAAgAogUACACiBQAIAKIFAAgCfYC61BZ4t1buK2hBIAAAlEEgAACUQSAAAJRBIAAAlEEgAACUQSAAAJRBIAGB85lKbiDRjcVUAAC6LQAIAKKGZ3gXUidPpdDgcIhIQEKB3LQCARuEFLSSHwzF+/Pg+ffo8+OCDetcCAF7JbD0nIoFnGUNqmDVr1nz33Xd6VwEAaFyqB9Lhw4dXrlypdxUAgEandCDZbLbZs2dfvHhR70IAwLtp074Vp3Qgvfzyy7m5uZ06derTp4/etQCA1wvkPqT6SUlJee+990Rk+fLlbdq00bscAEDjUjSQysrK5s2bJyIPP/zw0KFD9S4HANDoFA2khQsXnjx5snv37s8884zetQCA1ysotSk+51vUvDF2y5YtiYmJ/v7+L774YsuWLet9HYvFkpaW5nppMplMJpMnCgQA7+D6HfiT5YK+ldSFcoH0008/vfDCCyLyyCOPDBkypCGXmjt3rvvLhIQEAgmA70hLS5swYYK2Xdz/kWYtw/St57LUCiS73T579uyKioqoqKinnnqqgVebPn16bGys62VMTEwDLwgAXsRkMiUkJGjb81PKv/ohR996LkutQFqzZk16enpAQMDf/va3oKCgBl4tNjaWEALgs9zHKbrlHYm0/GTXt6DLUSiQjh49+ve//11EHnvssT59+tjt//mn01ZWdTqd2k4/Pz9/f0WnYwCAgsyl5/Qu4fIUCqTDhw9rizKsWbNmzZo11U/IzMzU7pD961//OmXKlKauDwC8ltlqa6F3DZdFOwMAfEJke9UjSaEW0qBBg5YtW1bjobVr1+bn53ft2vXJJ58UkRtvvLFpSwMANDqFAikyMjIyMrLGQ9u2bcvPz2/fvv0DDzzQtEUBgBGYS213RgXn6l1G7eiyAwAogUACAIPTnj0R2T5Y70Iug0ACAIPTnl8eGap6ICk0hlSLDRs26F0CAHgrr3g6n9BCAgAfERmq+rRvAgkADK6AFhIAQAVmq214dIjeVVwegQQAxqd+f50QSABgeHtyrXqXUCcEEgAYn/o3IQmBBACGZy61RSh/E5IQSABgbP9epoFAAgDoSxtAUv/ZE0IgAYAvoIUEANBZcm6ZV6SREEgAYHjDo9vrXUKdEEgAYGTechOSEEgAYGzmUtswb1g3SAgkADAwb3nwhIZAAgDD0vrrGEMCAOiswHvuihUCCQAMzGy1TRzSRe8q6opAAgDD8qIpdkIgAYCBedEUOyGQAMCo4g8UiffMaBACCQCMzVtmNAiBBABGlZxb5kUzGoRAAgCj8q4ZDUIgAYBRedeMBiGQAMCQvG5GgxBIAGBI2mOQvGhGgxBIAGBIe3Kt3tU8EgIJAIzHXGozl9oeHdJZ70KuDIEEAEbjXYt8uxBIAGA0XncHkoZAAgCjiT9Q5F0TvjUEEgAYijdO+NYQSABgKFp/nXdN+NYQSABgKF7aXycEEgAYiff21wmBBABG8u6BIi/trxMCCQCMZE9umZf214lIM70LqIHdbt+wYcPXX3+dlZVVUVHRtm3b7t2733vvvffdd19AQIDe1QGAory6v04UDKTCwsJZs2ZlZGS49pw5c6awsDA1NXXdunX/+Mc/QkK8NfwBoFEtScz33v46UbDLbuHChVoahYWFPfTQQ0888UTv3r21Q7m5uU8//bTT6dS1QABQUfyBIm9cv86dWi2k5OTkffv2iUivXr3WrVvXsWNHEZk1a1ZWVtb//M//nDlzZt++fWazuUePHnpXCgBqefdA0fDoEO/trxPVWkh79uzRNubPn6+lkeaaa64ZP368tp2Zmdn0hQGAysyltj25ZY964fp17tQKpOzsbBFp27btjTfeWOVQp06dtI2ioqKmLgsA1LYkMV9EvHFBVXdqddn17NkzPDzcZDJVP5Senq5t3HzzzU1bFACoLv5A0eKRXj+WoVYgLVmypPpOp9P5/vvvf/bZZyJy1VVX9enTp45Xs1gsaWlprpcmk6nGqAMArzZp0xERWTSqhkBy/x2YmpradDXVi1qB5O7MmTNvvfXWqVOnMjIy8vPzRSQiImLVqlV1v8LcuXPdXyYkJBBIAIznUs2jtLS0CRMmNH099aZuIFVUVKxZs8Z9z4gRI9q3v4IJJNOnT4+NjXW9jImJ8VhxAKCGWppHJpMpISHB9dJisVT5M1016gZS69athw0b5nQ6LRZLXl6e0+lct27dP//5zw0bNnTv3r0uV4iNjSWEABiYudQWf6Bo/cO9azxaZZzCvftOTWrNsnPXqlWr1atXr1mz5vPPP9+8efM111wjIoWFhTWOMwGADzLG5DoXdQPJXd++fVetWtWqVSsRSUlJKS4u1rsiANDZnlxrLc0jb6RQIFmt1k2bNm3atCkvL6/60W7durluTjKbzU1aGQCoZ8m/8odHhximeSRKBVJeXt6iRYsWLVq0ffv2Gk8IDw/XNiorK5uwLgBQTvyBoj25ZTXOZfBeCgVSdHS0tvH111/XeML333+vbfTt27eJagIAJU3adGTikC5evXJddQoFUkhISOfOnUUkIyPjk08+qXJ03bp1R48eFRGTyRQaGqpDfQCghrhV6SJipNEjjVrTvufNmzdjxgxt4/DhwyNHjuzUqdOJEyfef//9nTt3auc8/fTTutYIAHrak2vdk1u2e9oAvQvxPLUCafTo0ffff//mzZudTmdCQoL7LV2axx9//O6779alNgBQwaRNR7z9MROXolCXnWb58uWrV6+++uqr/fz8XDv9/PyGDBmycePGOXPm6FgbAOgrblW6udS2/uG6LunpXdRqIWmGDRs2bNgwvasAALVoM+t2TxvgvQ8pr51yLSQAQHXmUpshZ9a5I5AAwAtM2pQZGRpsvJl17lTssgMAuFvyr3yjzqxzRwsJAJS2J9e6ODF/97QBBu6s0xBIAKCuPbnWuFUHjTrPuwoCCQAUZS61aWm0e9pAvWtpCgQSAChKm8jgI2kkBBIAqCluVbrZats91VfSSJhlBwAKiluVbux7YGtUz0AqLCy0Wq3Nmzfv0KFDSEiIZ2sCAF82adMRLY18YSKDu/oE0qOPPrp//37Xy1atWplMpjlz5vTr149wAoCG0NpG6x/u7WtpJPUIpKSkpP3795tMpmbNmpWXl1ut1oqKiuzs7MmTJwvhBAAN4Oqp88E0knoE0v/+7/++//77Awf+e5zt/PnzFovlzTff3L9/f0lJSfVwmjdvXp8+fQgnAKiFudQ2aVOmL6eR1COQHA5Hz549XS+DgoKioqJefvllEamsrLRYLKtXr/7qq6+Ki4u1cJo0aZKItGrVKjIycsuWLR4sHQCMQUsjs9Xmy2kk9Zj2HRMTY7VaazwUGBgYGRm5fPny5OTkzMzMxMTEcePGaU8lr6ioOHz48IMPPtjQegHAWMyltrg3081Wm2+OG7m74hbSzJkzH3744S+++KL20wICAiIiIhYvXrx48WK73V5YWLhhw4Z77rmnvnUCgAGZS209ln0dGRqcP/9mvWvR3xW3kEJCQuLi4t588826vyUgIKB79+7z58/v16/flX4cABjVnlxrj2VfD48OIY009Vmp4ZlnnjGbzQsWLPB4NQDgI1yrpvrOykCXVZ9AevbZZz/99NOPPvqof//+M2bMMJvNlZWVHq8MAIwq/kARaVRdfe5D2rx5s7Zts9m++OILbTypY8eOsbGx06dP7969e0BAgIfLBACjWPKv/MWJ+ROHdDH241/roT73IW3ZsqV3795lZWU5OTlLly61WCwVFRUlJSXbt2/fvn27iHTu3Pmuu+565plnGqFgAPBikzYdiT9QtHhkj0Wjeuhdi3KuuMtOW6PB398/NDQ0JiZm+/bt6enpqampCQkJvXr1atWqlYgUFxe/8847BQUFjVAwAHiruFXp8QeK1j/cmzSq0RW3kN5+++0hQ4b8/ve/nzJlSnh4uLYzJCRECycRKSsry87OXrduXUREhIeLBQCv5ePLAtVFfSY1HDhwYNCgQWPHjh08eHBWVlaVo1o4vf32254oDwC8nnazEWl0WfV8/MTIkSNHjhzpcDj8/XnEHwBckjaFQbv11aceblQPDXpAH2kEAJfiWi+VKQx1xBNjAcDzXA0juunqjkACAE+iYVRvBBIAeEz8gaJJm47QMKofAgkAPMDVMGIJhnojkACgobSVUmkYNRCBBAD1Zy61vXugaHFiPiulNhyBBAD15GoYMX/BIwgkAKgPbWI3DSMPIpAA4MqYS21xb6abS200jDyLQAKAK8BSQI1H9UByOp1+fn56VwEA3PHa6BQNpE8//TQ5OfnIkSMFBQXh4eFRUVEjRowYN25cs2aKFgzAwFxT6ZjY3aiU+/1utVrnz5+/a9cu156SkpKSkpL9+/cnJCS8+eab0dHROpYHwKe4RxENo8amXCDNnj07JSVFRFq3bj1s2LBevXodP378s88+O3/+fEFBwYwZMz766KMWLVroXSYA43MNFxFFTUOtQPrmm2+0NAoPD1+/fn2vXr20/VOnTv3DH/5QXFx87NixDz74YOLEiXpWCcDotCgSEaKoKakVSB988IG2MWfOHFcaiUj37t0XLVo0depUETl06JA+xQHwAXtyrZM2HTGX2oZHh6x/uA/z6JqSWoFUVFQkIq1bt77rrruqHLrpppu0jSNHjjR1WQB8gGsSHVO69aJWIBUXF4tI165dAwMDqxyqqKjQNlq1atXUZQEwNHOpbUlifvyBIibR6UutQHrjjTd++eWXtm3bVj+0f/9+bcO9Kw8AGoJJdEpRK5D69etX4/7y8vKXXnpJ2x42bFgdr2axWNLS0lwvTSaTyWRqYIUAjMFHosj9d2BqaqqOldSFWoFUo8LCwj/+8Y8lJSUiEhMTM2rUqDq+ce7cue4vExISCCQA4jOT6NLS0iZMmKB3FVdA9UD64osvlixZUlpaKiJRUVGvvPJK3d87ffr02NhY18uYmBjP1wfAq8QfKFqSmO8j66KaTKaEhATXS4vFUuXPdNWoG0inTp1avHjxl19+qb2MiYlZuXJl+/ZXMNgYGxtLCAHQuM/n3j11oC9MoqsyTuHefacmRQNp27ZtL7zwwi+//CIiwcHBM2bMmDhxor+/v951AfA+7vO5mUSnMhUD6eWXX167dq22PWLEiPnz53ft2lXfkgB4I/eZC+sf7j1xSBe9K0JtlAskVxq1bdt20aJFY8aM0bsiAN7H/dYiXxguMga1AikzM/Odd94RkfDw8A0bNrCwN4ArteRf+fHfFplLbUSR11ErkFasWOFwOETk//7v/0gjAHXn6p0TEd+ZtmAwCgXS2bNnDxw4ICItWrQ4evTo0aNHazytW7duQ4cObdrSAKiryi2ujw7pQhR5KYUC6ccff9SaR+fOnVu0aNGlTvvNb35DIAEQBooMR6FAOnbsWF1Oa968eWNXAkBxDBQZkkKBNH78+PHjx+tdBQB1VRkoWv9wb24qMhKFAgkALsU9ihgoMioCCYDSGCjyHQQSAEUxUORrCCQAanHvnWPJH59CIAFQBQNFPo5AAqA/BoogBBIAHWlNIgaKoCGQAOiAgSJURyABaDo0iVALAglAU3CNEonI4pE9hvUMYZEFVEEgAWhEVbrmaBKhFgQSgEax5F/5e3Kte3LLeCoE6ohAAuBJNIlQbwQSAA+oPluBJhGuFIEEoEHcm0QTh3QZNjKECdyoHwIJQH0wgRseRyABuDLxB4qSc8u0ZX4mDu5C1xw8hUACUCfMVkBjI5AA1IbZCmgyBBKAGmg5pN1IJMxWQJMgkAD8h5ZDZqtNW+OHrjk0JQIJgAhDRFAAgQT4tOo5xBAR9EIgAb6IHIKCCCTAh1SfMsdjIKAOAgkwvio5NHFwF3IICiKQAMOqMnV7eHTIxMFdmKoAZRFIgAG5VvcRpszBexBIgHEwdRtejUACvB5T5mAMBBLgrcghGAyBBHiZPbnW5Jwy9xxiyhyMgUACvEP1HKI9BIMhkAB1aZ1yIkIOwRcQSIByalxymxyC4RFIgCqq3MfKvG34Gi8IJLvdLiIBAQF6FwI0CnII0KgeSCkpKZMnTxaRgwcPtmzZUu9yAI8hh4AqVA+k999/X+8SAE+qvr4cOQRo1A0kh8Px4osv7tq1S+9CAA+ost52ZHvaQ0BVygXSDz/8cOjQodzc3MTExJMnT+pdDtAg1Z/7EBEaPHFIF73rAlSkXCC9/PLLqampelcBNAg5BNSDcoEUGhrauXNn18tffvnl3LlzOtYD1JG51Ga2nnNfTIHn4AFXRLlAeu2119xfzpkzZ+vWrXoVA1xWjZPlyCGgHpQLJMAr1JhDLKYANISRA8lisaSlpblemkwmk8mkYz0wACbLwbu4/w5Uf3jeyIE0d+5c95cJCQkEEuqBwSF4qbS0tAkTJuhdxRUwciBNnz49NjbW9TImJkbHYuB1GByCtzOZTAkJCa6XFoulyp/pqjFyIMXGxhJCuFIMDsEwqoxTuHffqcnIgQTUHYNDgO4IJPguBocApRBI8DkMDgFqIpDgKxgcAhRHIMHgGBwCvAWBBAPSQshstcUfKBIGhwAvQSDBOOiUA7ya6oHUvHlzvUuA6vbkWt1nytEpB3gp1QPphRdeeOGFF/SuAsqp3inHTDnA26keSIA7OuUAAyOQ4AWqdMoNj26/OLo9nXKAwRBIUBS3rwK+hkCCWtxvGxI65QBfQiBBf1oIiYj7mnIiQqcc4FMIJOiGTjkA7ggkNDVuGwJQIwIJTYHGEIDLIpDQiJihAKDuCCR4WI0zFCJCgycO6aJ3aQCURiDBM+iUA9BABBLqr/ojwJmhAKDeCCRcMRpDABoDgYS6Yro2gEZFIKE2NIYANBkCCTVgujaApkcg4d+qP/Ju4uAuNIYANBkCydfRGAKgCALJF7G6NgAFEUg+hBkKAFRGIBlcjY2h4Tz/G4B6CCRjojEEwOsQSMZhLrXtybUWlNpcjaHh0e0X0xgC4CUIJK9HYwiAMRBIXql6Y4iFfAB4OwLJm9AYAmBgBJLqeMQDAB9BICmKxhAAX0MgKYTGEABfRiDpj8YQAAiBpJcqjSERGR4dwqqmAHwZgdSkaAwBwKUQSI2OxhAA1AWB1FhoDAHAFSGQPInGEADUG4HkATSGAKDhCKT625NrTc4pcz38m8YQADQEgXRlqjeGJg7uQmMIABpO0UDau3fvxx9/nJOTc/LkycDAwJ49ew4aNGjKlCktW7bUpZ4qjSGtU47GEAB4kHKBZLfbFyxYsGXLFvedp0+fTk1N3bp168qVK6+77rqmqYTGEAA0JeUCKT4+3pVGt956a//+/UtKSpKSkk6dOmWxWGbNmrV9+/bg4EZsl9AYAgBdqBVIZWVlK1euFBE/P79ly5bdf//92v7p06c//vjjx44dO378+Pr166dOnerZz6UxhMaTlpZmMplMJpPehQCqUyuQkpOTbTabiMTFxbnSSEQ6deq0cOHCRx55REQSExM9FUg0htDY0tLSJkyYkJCQQCABl6VWIKWkpGgbY8eOrXIoNjY2IiKioKAgMzPz9OnTYWFh9fsIGkMAoCa1AqmgoEDbuOGGG6ofveGGG7QTjh8/fqWBRGMIABSnViAVFhaKSJs2bdq3r6G9EhERoW1YLJYBAwZc9mrm0nP//Fe+qzEUePb0iK6OqYNChvfULn6yJOdkieeKB6pLTU0VEYvFkpaWpnct8HXat1FlagVSRUWFiNSYRu77tdNqdzas10Nf2kXyA8+eDvvpm7Yn9geeO50rkiuyzoMVA3Uwd+5cvUsAvIBagXThwgURad68eY1HAwMD3U+rhclk2vzawrNhV7c8fUyktUiEyMOeLRUAvFFMTIzeJVySWoEUGBhot9u1iXbVORwObcPpdNZ+nf/Mso1W958eAODOX+8C/kvtSeNqGLmaSgAAw1ArkIKCguTSQ0Rnz551Pw0AYCRqBVKnTp1ExGq1lpWVVT+al5fnfhoAwEjUCiTX3ezZ2dnVjx47dkzb6NatW9PVBABoEmoF0uDBg7WNbdu2VTmUnZ199OhREQkPD7/qqquaujIAQCNTK5Buv/12bWPz5s0//vij+6GlS5fa7XYRiYuL8/Pz06E4AEBjUiuQoqOjR48eLSIOh2PatGnbtm0rKCjIyMiYOXOmdqN7cHDwlClT9C4TAOB5fpe9p6eJnT59+oEHHtDWEKrCz89v4cKF48ePb/qqAACNTa0WkoiEhYVt37593LhxLVq0cO308/Pr1avXe++9RxoBgFEp10ICAPgm5VpIAADfRCABAJRAIAEAlEAgAQCUQCABAJRAIAGAr7Db7dqSN2pS6wF9Dbd3796PP/44Jyfn5MmTgYGBPXv2HDRo0JQpU1q2bKl3aTCUhn/TFixYUOOq9prZs2dHRER4qFhARCQlJWXy5MkicvDgQTV/JRrnPiS73b5gwYItW7ZUP2QymVauXHndddc1fVUwHo98086ePTtw4MBa/vd9+OGH/fv3b1ChwH+bNm3arl27ROFAMk4LKT4+3vU74tZbb+3fv39JSUlSUtKpU6csFsusWbO2b98eHBysb5EwAI9807Kzs7U06tevX7t27aqfEBYW5vHK4bMcDseLL76opZHKDNJCKisrGzZsmM1m8/PzW7Zs2f3336/t//nnnx9//HHtQUozZ86cOnWqrmXC63nqm/bBBx8899xzIpKUlOR6DBjgWT/88MOhQ4dyc3MTExNPnjzp2q9sC8kgkxqSk5NtNpuIxMXFuX5HiEinTp0WLlyobScmJupTHAzEU9+0rKwsEWnTpg1phMbz8ssvP//88xs3bnRPI5UZJJBSUlK0jbFjx1Y5FBsbqw0OZ2Zmnj59uqkrg7F46pumPRP52muvbYQagX8LDQ3t7MZ9xWo1GWQMqaCgQNu44YYbqh+94YYbtBOOHz9O1zwawlPfNK2F1Lt3bxEpKSnJy8tr06ZNVFSU+r8y4EVee+0195dz5szZunWrXsXUhUECSXt+Ups2bdq3b1/9qGv6rMViGTBgQJNWBmPxyDetqKiovLxcRKxW6+jRo/Pz87X9/v7+/fr1W7hwYb9+/TxfOqA8g3TZVVRUiEiNvyPc92unAfXmkW+a1jwSke3bt7vSSEQcDsf3338/duzYd955xzPlAl7FIC2kCxcuiEjz5s1rPBoYGOh+GlBvHvmmuQLJ399/7Nixt9xyS+fOnY8dO7Z27dq8vDyHw/Hqq68OHTq0V69eHq0dUJ1BAikwMNBut2vTn6pzOBzahjHmuENHHvmmlZaWhoSEOJ3Ol156KS4uTtt5/fXXjxkzZubMmUlJSRcvXly2bNm7777r2eIBxRmky672//+uP1ddf8AC9eORb9q8efNSU1PT0tJcaaQJCgpaunRp69atRSQjI8MVb4CPMEggBQUFyaU77s+ePet+GlBvjf1NCw8P12ZD2Gy2HR6g0wAAEFVJREFUn376qX4XAbyUQQKpU6dOImK1WmtcrTIvL8/9NKDemuCb1rVrV23j+PHj9b4I4I0MEkiu2921+w2r0BZ0EZFu3bo1XU0wooZ/08rLy5999tm5c+du27atxhMsFou2wd9P8DUGCaTBgwdrG9X/k2dnZx89elREwsPDr7rqqqauDMbS8G9aUFDQ1q1bP/nkk/Xr11c/Wl5efujQIREJDAzs0aOHx+oGvIFBAun222/XNjZv3vzjjz+6H1q6dKn2QKq4uDg/Pz8dioOBXOk3bceOHZs2bdq0adPBgwe1PUFBQdoCDZmZmRs3bnS/gtPpXLFihXbP7PDhw5s1M8gkWKCOAhYvXqx3DR4QGhqak5OTk5PjdDqTk5PDwsKCg4PNZvOKFSuSk5NFJDg4+JVXXgkJCdG7Uni3K/2mTZ8+/dNPP92zZ0/btm2HDh2q7WzTps0XX3whInv37j1+/Hjbtm3tdvv333+/cOHCnTt3ikiLFi3eeuutNm3a6PRTwpi+/PJL7R64J554Qs0px8b5E+y55547dOhQYWHhzz//PHv2bPdDfn5+c+bM4fmb8IiGf9PuvPPOjIyM+Ph4p9O5devWKsuLtW3bdvny5a6pDYDvMEiXnYiEhYVt37593Lhx7stT+vn59erV67333hs/fryOtcFIruib5lrTocofpPPmzVu7dq3Wd+fSrl27UaNG7dix44477mi08uG7LrXCiDoM8oA+d06n02KxmM3mkJCQ6Oholk9GI/HIN+3XX3/Nz8//9ddfo6OjO3fu7PEiAS9iwEACAHgj43TZAQC8GoEEAFACgQQAUAKBBABQAoEEAFACgQQAUAKBBABQAoEEAFACgQQAUAKBBABQAoEEAFACgQSlJScnux5tB8DYjPM8JBhPcnLyH//4RxH59NNPqzypAYDx0EKCurTHqopI69at9a0EQBMgkKCur7/+WkSGDh3avXt3vWsB0OgIJCjKbDYXFxeLyOOPP653LQCaAoEERaWmpopIRETEzTffrHctAJoCkxqgv5ycnLy8vNLS0tDQ0KFDh7Zs2VJEvvrqKxEZN25cjW8pKipaunSpiEyaNGnIkCF1/KCMjIzVq1c3a9Zs+fLlBhiXWrZsmcViMZlM8+fPz8vLs9vtIhIVFRUQEFDLu86ePWuxWETEz8+vZ8+eTVQrUAcEEvRktVrnzJmzd+9e156EhISYmBiHw5GcnNysWbMHH3ywxjcuWbJk9+7dHTp0uO666+r+cT169EhLS/v111+7du06d+7chlavq7y8vA0bNojIhAkTRGT8+PGlpaUisnLlylGjRtXyxvT0dK0XtFmzZocPH26SYoE6ocsOelq0aJF7Grmkp6fbbLb777+/xnbM559/vnv3bhH585//3KJFi7p/XLt27R577DERSUhIyM/Pr2/VSvjoo4+0jYceesh9v9ZOArwRgQTdnD9/PikpSdu+55573njjjVdffbVPnz4isn//frlEf11FRcWyZctEpEePHg888MCVfujEiRNDQ0MvXry4fPnyBlWvq8rKyk8++UREbrjhhquvvlrvcgDPIJCgm+Li4srKShFp1arV888/f8cdd4wZM0ZrEu3fv3/AgAE13gz76aefnjp1SkQmT55c+2BJjVq2bDl+/HgR2bt375EjRxr6M+hk586dVqtVRMaOHat3LYDHEEjQjcPh0DYiIyPde94qKyvT09Or9ERpnE7ne++9JyJBQUGjR4+u3+f+9re/1Tbefffd+l1Bdx9++KGItG7d+q677tK7FsBjCCTooLCw0Gw2a3O9ROTChQtms9lsNv/0008ikp2dHRUVde+991Z/49dff52XlycicXFx9Z4mFxERcf3114vIjh07tMZWEzt//rz285aXl9d4QnFxsdlsLigoqPHoiRMnvvnmGxH57W9/e0VDaIDimGUHHUybNs29u+zYsWPaxLCIiIjExMS+fft+9tlnNb5x+/bt2sbdd9/dkALuvvvuQ4cOXbhw4bPPPps4cWJDLlUPR44c0dp/w4YNW716dfUTnnnmGW0UrcZF/D7++GOn0yn018FwaCHBm2h3y4rIwIEDG3Id19u1u530cvHixSs9wW63b968WUT69u2rTQABDIMWEnQwceJEi8VSXFysjYV06NBBm1DXrl27Wt5VWFhYWFionR8eHu5+6NSpU2+88caZM2duv/1217BKXl7e1q1bT5w44e/vf9NNN91///2u86+55pqAgAC73X7gwIHKysrAwECP/4yNZPfu3SdPnpRqs70BAyCQoIP77rtPRPLz87VA6tix45NPPnnZd6WlpWkbffv2dd/vcDj+8pe/PPXUU+fOnZs8eXJWVtasWbNef/31zMzMhx56aMqUKfv37//LX/6ya9euVatWaW8JCgqKjo7Ozs4+d+5cRkZG7Ws9mM3mX3/9te4/Xd++ff39G6vvQfsXa9my5ZgxYxrpIwC9EEjwGidOnNA2rrrqKvf9H3300ZAhQwYPHqxN23vnnXesVmuPHj3efvtt7YQRI0YMGTJk165d6enprs66qKio7OxsETl+/HjtgbR8+fLk5OS615mRkdFIcw2KiopSUlJE5O67727VqlVjfASgI8aQ4DW0pXFEpG3btu77d+7cqc3k1hLrwoULQUFBkyZNcj9H6wzUevyqXOT06dO1f66fn19DS/eQzZs3a6HLdAYYEi0keA1XILVp08a102635+fna4uEfvvttyJiMpn++te/VnmvtlBQs2b/+cLXPZAWLlw4derUutcZFBRU95PrzuFwaNMZrr32Wm3aOmAwBBK8huuuHffeKofD8be//U3b1qbM3XHHHVUi4dy5c1rv3LXXXuva6bqNyZVzl9KtW7du3bo1tPoG27dvn9bCq715pM0Ir8sJzZs391RtgEfQZQev4YqQc+fOuXYGBga6hoW0SeGxsbFV3qgFVVhYWGRkpGuntmqRKPl7ucZQ0aYzBAcH33PPPdWPulqNP//8c+0XLykpaXCBQKOghQSvERYWpm3UOOetoKDg1KlTAQEBt9xyS5VDBw4cEJEqD/pzXcR12UuprKys+xLafn5+De+yqx4qp06d0haivfPOO917LF2ioqK0lR0uu4q5awEI93gGVEAgwWu4kqPGFXe0AaS+fftWz4P09HQRuemmm9x3ui4SGhpa++c++eSTdZ9lFxAQcPDgwdozyTUp3NVKc3fhwgVtCSV3W7Zs0ULxUv11UVFR2iM5vv32W7vdXsuys99995224d6BCaiALjt4jY4dO2obxcXF1Y9q/XKDBw+usv/8+fPaY+iqHNJuLxWRDh06eLBIu93uWjT2Ulx39R4/frz60ffee6/KAg1Op1N7+lHPnj0vtURFdHS0tpGXlxcfH3+pj/7yyy+15BaRGhdTB3RECwlew5UomZmZ1Y9qA0gxMTFV9n/11Vd2uz08PDwiIsJ9v+siAwYMqP1zn3zyyTvuuKPudV52UKpTp07+/v4Oh6O4uHjbtm3uY0LffPON6+5dl9TUVC26apnOcNddd7311lvaaStXrgwMDBw/fnyVdlJSUtLixYu17dDQUG6thWoIJHiN6OjoTp06/fzzz8ePHy8vL3e/G8k1gDR06NAq79IGkKr01xUVFWnPE+ratWvXrl1r/9z+/fv379/fMz+DiIgEBASMGDEiMTFRRObOnfvdd98NHDjQarUeOnTo888/rz6jQZvO0Lx5c22Fixq1aNFixYoVf/jDHxwOh81mW7Zs2YcffnjLLbdERka2atXKbDZ///33+/btc53/3HPPXbavEmhiBBK8yS233LJlyxYROXz4sHvGaN1Q/fr1q74qnTaAVGWmw48//qhtVJ+S1zS0canz58/b7fZNmzZt2rTJdej2228PDQ39+OOPtZdWq/XLL78UkVGjRtW+1t+gQYOeffbZV199VZuFeOzYsWPHjlU/LTAwcMqUKXfeeacnfx7AExhDgm5cI/91n5Y2cuRIbUNrXrhoo0S33nprlfMrKyt/+OEHqbY6+K5du7SNuLi4KyvaQ6699trNmzdXWZSvY8eODz744Ouvv+7+qKetW7deuHBB6rY6w4QJE3bu3DlhwoRLLRcbFxe3Y8eOGTNmNKx8oFH4XfY2OkAdTqdz1KhRBQUF7du337dvn2vlhbKysu+//37YsGFVzk9KSpo6dWrHjh21JeA0Npvt5ptvrqio6Ny5c1JSUj2eg+5BJ0+ePHr0aFBQkMlkMplM1U/Yt2/foUOHmjdvPnny5LpftrKy0mKxnDhx4sSJEwEBASEhIRERERERETzQDyqjyw7exM/P79FHH33++eetVmtKSoqrfRMSElI9jeT/99fdeOON7juTkpIqKipEZNy4cfqmkYh06NCh9ml+Q4cOrT4wdlmBgYGRkZHcaQTvQpcdvMzvf//7kJAQEdm4ceNlT9YCqcov9Pfff19EgoODWaIUUAqBBC/TokWLmTNnikhKSorrCUk1stvtGRkZIuL+dIm9e/dq75o+fTrTzAClMIYE72O323/3u99lZWUNGDDAfX5aFbt3737iiSc6d+7sWmfB4XDcd999WVlZvXv33rx5s+79dWpKSUnR5vXFxMT85je/qT7s5HA4EhMT9+/f73A4brvtthEjRuhRJgyIFhK8T0BAwIIFC0Tk4MGDBw8evNRpWvPIfQm7PXv2ZGVlBQQELFu2jDSq7uzZs48++ugrr7xy5syZvLy8p59++rbbbtOeeeGSlpY2cuTI/fv333bbbSNHjiwuLp42bdqZM2f0qhlGQgsJ3kpb262WXPn2228/+OCDp556qkuXLtoeh8OhfeFJoxo99dRTQ4YMGTdunPYyPT19+vTpp0+ffuyxx5555hkR2b1793PPPbd69Wr3ZYdycnLeeeed5cuX61M0DCTAtZQI4F38/f1dq5TWqGvXriNHjnRfG9vPz++y7/JZWVlZ+fn5Tz75pGtPly5dbrzxxs8++ywtLS04OLht27Z//vOf33333Wuuucb9jaGhoVlZWWFhYe3bt2/yqmEotJAAiIisWrVq9OjRUVFRVfbv3LlTSymTyTRjxox77723+ntPnDjxxRdfTJkypSkKhXHxpyIAEZGCgoLqaSQiI0aM0O7JLS4urv6sKU337t3z8vIatz74AAIJgIiItgB5jYf+9Kc/iYjdbp85c2aN5zgcjkstVgTUHWNIAEREysrKLl682Llz5+qHnnvuuV69ep0+fTonJ6esrKz6ohhfffVVhw4drr766iapFIZFCwmAiMjIkSNrvKlr/fr1mZmZzz///N///vfg4OCNGzeuX7/e/YTKyspVq1YNHz68iQqFcdFCAiAiEhQUdPLkyW+//db1xMLz58+/9NJLiYmJ8fHx7dq169KlS//+/Xfv3r1r165ffvnluuuua9GiRU5OzqxZs373u9959pFR8E3MsgPwH//4xz/++c9/du/e3WazpaamjhkzZsaMGS1btnSd8PPPP7/yyis7duyw2+3NmjULCgqaPXu269YloCEIJAD/xW63p6amNm/efODAgZe6Z0s7p1mzZoMHD+a+LngKgQQAUML/A9I3FVI1xzGcAAAAAElFTkSuQmCC\n", "text/plain": [ "" ] @@ -433,13 +433,6 @@ "source": [ "We can see that this plot of $\\eta$, the $y$ position normalized by the boundary-layer thickness, vs. nondimensional velocity matches the original figure." ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] } ], "metadata": {