From 8fe508c3414257a54e7855fb8e39296ed360676a Mon Sep 17 00:00:00 2001 From: Kyle Niemeyer Date: Tue, 25 Feb 2020 11:50:47 -0800 Subject: [PATCH] added eigenvalue notes --- _build/bvps/eigenvalue.html | 169 ++++++++++++++++++++++++++ _build/images/bvps/eigenvalue_1_0.png | Bin 0 -> 17495 bytes _build/quizzes/quiz3-BVPs.html | 2 +- _data/toc.yml | 1 + content/bvps/eigenvalue.ipynb | 167 +++++++++++++++++++++++++ 5 files changed, 338 insertions(+), 1 deletion(-) create mode 100644 _build/bvps/eigenvalue.html create mode 100644 _build/images/bvps/eigenvalue_1_0.png create mode 100644 content/bvps/eigenvalue.ipynb diff --git a/_build/bvps/eigenvalue.html b/_build/bvps/eigenvalue.html new file mode 100644 index 0000000..b30aa4d --- /dev/null +++ b/_build/bvps/eigenvalue.html @@ -0,0 +1,169 @@ +--- +interact_link: content/bvps/eigenvalue.ipynb +kernel_name: matlab +kernel_path: content/bvps +has_widgets: false +title: |- + Eigenvalue problems +pagenum: 16 +prev_page: + url: /bvps/finite-difference.html +next_page: + url: /quizzes/quiz2-IVPs.html +suffix: .ipynb +search: y lambda l frac x n align begin p end beam pi equation b cos sin quad boundary ei rightarrow ldots infty different solution lets conditions mz modes gather eigenvalue problems eigenvalues example buckling consider e neq load means characteristic value where obtain certain values us deflection supported get governing considering sum general because text eigenfunctions associated corresponding buckle properties cr case types show areas involving not able analytical identify tell important information system simply static vertical start moments around upper pin m also d dx governs stability small deflections simplify things define gives ode coefficients apply starting otherwise trivial + +comment: "***PROGRAMMATICALLY GENERATED, DO NOT EDIT. SEE ORIGINAL FILES IN /content***" +--- + +
+
Eigenvalue problems
+
+
+ +
+
+

"Eigenvalue" means characteristic value. These types of problems show up in many areas involving boundary-value problems, where we may not be able to obtain an analytical solution, but we can identify certain characteristic values that tell us important information about the system: the eigenvalues.

+

Example: beam buckling

Let's consider deflection in a simply supported (static) vertical beam: $y(x)$, with boundary conditions $y(0) = 0$ and $y(L) = 0$. To get the governing equation, start with considering the sum of moments around the upper pin: +\begin{align} +\sum M &= M_z + P y = 0 \\ +M_z &= -P y +\end{align}

+

We also know that $M_z = E I y''$, so we can obtain +\begin{align} +M_z = E I \frac{d^2 y}{dx^2} &= -P y \\ +y'' + \frac{P}{EI} y &= 0 +\end{align} +This equation governs the stability of a beam, considering small deflections. +To simplify things, let's define $\lambda^2 = \frac{P}{EI}$, which gives us the ODE +\begin{equation} +y'' + \lambda^2 y = 0 +\end{equation} +We can get the general solution to this: +\begin{equation} +y(x) = A \cos (\lambda x) + B \sin (\lambda x) +\end{equation}

+

To find the coefficients, let's apply the boundary conditions, starting with $x=0$: +\begin{align} +y(x=0) &= 0 = A \cos 0 + B \sin 0 \\ +\rightarrow A &= 0 \\ +y(x=L) &= 0 = B \sin (\lambda L) +\end{align} +Now what? $B \neq 0$, because otherwise we would have the trivial solution $y(x) = 0$. Instead, to satisfy the boundary condition, we need +\begin{align} +B \neq 0 \rightarrow \sin (\lambda L) &= 0 \\ +\text{so} \quad \lambda L &= n \pi \quad n = 1, 2, 3, \ldots, \infty \\ +\lambda &= \frac{n \pi}{L} \quad n = 1, 2, 3, \ldots, \infty +\end{align} +$\lambda$ give the the eigenvalues for this problem; as you can see, there are an infinite number, that correspond to eigenfunctions: +\begin{equation} +y_n = B \sin \left( \frac{n \pi x}{L} \right) \quad n = 1, 2, 3, \ldots, \infty +\end{equation}

+

The eigenvalues and associated eigenfunctions physically represent different modes of deflection. +For example, consider the first three modes (corresponding to $n = 1, 2, 3$):

+ +
+
+
+
+ +
+ +
+
+ +
+
+
clear all; clc
+
+L = 1.0;
+x = linspace(0, L);
+subplot(1,3,1);
+y = sin(pi * x / L);
+plot(y, x); title('n = 1')
+subplot(1,3,2);
+y = sin(2 * pi * x / L);
+plot(y, x); title('n = 2')
+subplot(1,3,3);
+y = sin(3* pi * x / L);
+plot(y, x); title('n = 3')
+
+ +
+
+
+ +
+
+ +
+
+ + + +
+ +
+ +
+
+
+
+ +
+
+ +
+ +
+
+

Here we see different modes of how the beam will buckle. How do we know when this happens?

+

Recall that the eigenvalue is connected to the physical properties of the beam: +\begin{gather} +\lambda^2 = \frac{P}{EI} \rightarrow \lambda = \sqrt{\frac{P}{EI} = \frac{n \pi}{L} \\ +P = \frac{EI}{L} n^2 \pi^2 +\end{gather} +This means that when the combination of load force and beam properties match certain values, the beam will deflect—and buckle—in one of the modes corresponding to the associated eigenfunction.

+

In particular, the first mode ($n=1$) is interesting, because this is the first one that will be encountered if a load starts at zero and increases. This is the Euler critical load of buckling, $P_{cr}$: +\begin{gather} +\lambda_1 = \frac{\pi}{L} \rightarrow \lambda_1^2 = \frac{P}{EI} = \frac{\pi^2}{L^2} \\ +P_{cr} = \frac{\pi^2 E I}{L^2} +\end{gather}

+ +
+
+
+
+ +
+ +
+
+

Example: beam buckling with different boundary conditions

Let's consider a slightly different case, where at $x=0$ the beam is supported such that $y'(0) = 0$. How does the beam buckle in this case?

+

The governing equation and general solution are the same: +\begin{align} +y'' + \lambda^2 y &= 0 \\ +y(x) &= A \cos (\lambda x) + B \sin (\lambda x) +\end{align} +but our boundary conditions are now different: +\begin{align} +y'(0) = 0 = -\lambda A \sin(0) + \lambda B\cos(0) \\ +\rightarrow B &= 0 \\ +y &= A \cos (\lambda x) \\ +y(L) &= 0 = A \cos (\lambda L) \\ +A \neq 0 \rightarrow \cos(\lambda L) &= 0 \\ +\text{so} \quad \lambda L &= \frac{(2n-1) \pi}{2} \quad n = 1,2,3,\ldots, \infty \\ +\lambda &= \frac{(2n-1) \pi}{2 L} \quad n = 1,2,3,\ldots, \infty +\end{align}

+ +
+
+
+
+ + + + +
+ \ No newline at end of file diff --git a/_build/images/bvps/eigenvalue_1_0.png b/_build/images/bvps/eigenvalue_1_0.png new file mode 100644 index 0000000000000000000000000000000000000000..155192f0f4c9bc88ff3d02e6659d875df53e1fc6 GIT binary patch literal 17495 zcmbV!2RxQ<`}bWoh0G#ZcV>3B2;oNdCOb1LGdr>)dy|}&k3dHfqm~rrO^K#Si@QCp6iSP)p4sH-^i zHr6Nt>uhM8?seI&(htAZaI#lztfa=d@Wh-^urg+<<2sKnu|MkviJ%t$t8!Y1C&-sS zg}=}IS>+0<=vX+s_hVrH;b(cg&~{7&;xYflRd@&luB0T)m2x)SIRt`IH3mK)U_l`e zZ?VXb2*liZd=do0=^Pdw0#W}s5Pt05ZS?7!|Ks%FbUhrzLjvq4630JOcD#-o-BxwG z&JXUjo*uT&o}T=n^*{PG_(G9}u&c@Qx2_x}$zGqM-|tZaN317piR?Olf8NYCFC`i1 z%5}UUvy-6DI5;?9&hl~Yj=Nr{l4VIlfXXf@S(!aOo@Ly)^Q6t`Xz$nBnq940+l^bh zU(7FFyciq$XU4l?a{c5TWy@P`Q)PfH8X>d{Bj{nTgR#_+tU3C|_ zI$3Mq`{Bd##zsX^kqHgu#~uU6=8^t>r{8^o5`U&#B=);i28V`JGK79jJgBIA_SAy~ zCBOai&4zyYXk1)e*72HEZxYAQ>JE|k-drfHU&q*PPB(&~JB zsB}(0JhQRy&PZRnpv1}ELQo7TvoeZ`_v77(nv;1Vf4ZP4|I=fMgMnxPhbdiMT@%)e7K`}{5N$=mkzmH8g6f02v`}=3(H}323^t7H7^ozTbjw;_y5e0Pi z`dOaeQZG^qSihctK{XxkPTJes2NCNhnTVL8(lBrc`{R#{Pj`%yxs3h3hBM>R*G;=m z2DKZ()39o|eC-HlHLiX6@)>c}{qDHMQz8?5d4&foWD~Xa)VIDRw;ow+oziX!%PW-j zS?1yR9IqO;dhOW4F*9ibdBWMlnLp|p8nln*0??BwEiFxYvQuh&yz;Ftompb_ndr}$ z>msO_Ae)_ipViTFQLpV~CBfhVHA!#LjsQO;0Jgo;yDeG^$W>xX(>MQm{khzt=8JbZh%Z zVb-_B#iref2kbg86U6kxVl{1izolBuz*{MN?p2bVZL+g6vaqm_F6ijD5GAM@QxF>1 zF*DQbP3yf@+1)Df@ar81hnGjc9wW`}uI~T-K31m3$IEM0H#z%gAqp=qEZTX$Karfl-X#e*T5q3U_x&G;Q z{}ZeG_k)NBXJ($Krpo)L#>W1FXYVFPcCf#%5rG1)(g zNeLRVt(&B#qI&NAQ#iUy8aGwYai;Znvh{clM*^jgfFGDhg+RnD(n|VU$N1)IMljQ8Wk-H(ZPND#77APb31#;h z)Dx-~cL^Omb_B?{gm*+u&7Q>wSHH`ol?wA;Rdk^}aWJ>?AD_ln6TdH1af}|@yCM}w z7NfOYLY>+Jh>ayfUj{aub`IFK$}DMCb?I0m4_vKsihX@K={q!iFWh=mUAP!{2bX8% z_4$!}bW|;qM%W15du~WWd&su6EPbix zn+xw8WSeV!+nuGti23nYa>iC&>cviO#~8U0D=pV3f3_VR*r44PZQN9g=dL6eT!@ws zH+?cs&HDN>E!^N|D`|%a8b3z1n36pV@UOXy(L8tafN@E-!qowKb;!%K!pRY&p zb%GIGTzU%%4EyWpCDA!II+YEv!hN*kw>(^Pm;yB6tdnP)FcTlmOlSz4f_CQ`n%iA< zW8H+#s~So&1PKu+eL7ESOM-ewiVFw(XD-xjT1-uO?-Un1G)GDMdZJ>hjye zb$;|*%Eda5FPgq(zS5i}m!@!O-aeap8MM(hq`IYWafol_bxTCk(Sbwjb%I+QF$g$y ze&wQLT_qtV=I!3WOt13xrOJqEpU97z6H*b@EJjVG3+6Xp&>PiI!EH@xaKrLHnq?0e zy{c+Y7&eOO(C;}X6kriRXBvA=tg#AX)oCwxH}HJd3l9r2d*>r}K4QmmYeDszu$F zl5G~?Jx4?<&VuqcAAV4|NHc|-bT=3o9?6zd92B@Mth+^6kYGF;Ws50Keyb#Z!aEV- z)#K|MbX11C5;;Fc1m5Jo;fX^=v5B23^HPx9k6Bi-k=`n&TPHR&E#Go~ zXL_AFDUT}Pf8hBVX*cUq$RpW=lYom1K&Xp9@rV_HC_+F*Cxn9v84R~DE zuYn^L_MGgK2!(JqU0~;yr6RWOO4vIsnO<(4>Vzg;%eIp6#Y-IS;E;J=b{%IKl{{N?&IqT?Ptkv&V zCnY*tsIt^N7~@QR5_#j|%luOM;(8@^ZKX`~(6D=`N4{0k?QC!77Zw_nYfGVQZAl8*3Qlm9!;g-qdf(NRM{9dCO_hc0I32LiUZKRXjh^0k z8vlcd$w>)-MWR3J&9_!>^7GS3_+=1RdH?yjD5E$jpI9y)+MD2r@^@7YYv+H<)&&OEhbkgzsJZevuG0cd-{U8jF>KBg!u;S5{WG zX5w@CL(jwYx>NLA?u_U}Uln$qh13GStv+R>9*ID@LaH!Zik`zMWM=A%NQ_Hd3~E`PVCuU(I)2VRqD>RctAg_RZ2 zg$ox52?zbGqPzG^8GejcTcIK1*QZ>A&jRIWeOsj&B>gyhikxv#!nvsPls z@mfsfO3}vGFN^+Pk2GEMW8Teg?(OXb6HvZ?Um#R?>B*BPfS3dibV3TBkLI&-;Rc8Q zLGs;QO-d5i%=^;m_S`B}`;)|V8P~kh%--G{mOLzOYDSgtp}9UyQIuK*$Lssy{9X81tUvlax+o00sYh@%i$0ohTjmS8 z<5u6q##bMdc^|KflPe2b#^3sav|P6S#m=YfM0k90L4nB756AM>%-!9zxG?ea;uflW zc}51c@928gu*s0ACNr5w%MlmK@(?Cv!)DfNWO-wRSn}dU^3D+OuI%VvpgDJWN5529 zIxH4RhSW0^lNX4}JYLcBp)v9LbUvP#QJw|m-2N!;0_4$$W0!6Rsa5b>=KuCLAi*cW zSbn3(<~n-rt|kBKjEHE5NW_(Fy2^l-H;a;1G;i;h{_MF;faiegt%bx8Sw$4w=U+XN zHZRLdIfqZ8SR_9v1t;B%yz-+=8hymPNM8LHPM`tdeg+n)pd&Uy4XzcMhQtf)MF+;B zEC(D+1pmV6bU*+yWqC@tyhG1G+p}|d7lQj(IH}l$dH_ucP9Rh3<`HGN{L*q zAnpJ%CeV*R3dm;ZrQ5>(`^cp{qsbQ2hDp)LG_qvKv{v-rcoDcnSmC0s3#P;Qmj}F$ z`^CWYerkUor!XM-@VLD8CQ z#C7DECQ^`5RX!p zqX4>7Lw7NX{O8Y~Z*RMnjws;DD=EDmx4U)g)&P#rucyXnL>|~iN52T=kWPhBri8zE zysCw&B@ZAmd?+ioY6RSO%|$R=9@XIoaF%t7M5O)_3i)Rm=;UQ*XD7zJL(AhWJ^*5bbs&JYJwYisty}k3`YAnQ|%X zHDdF4?rR1p*!u%S{8UOTWDzHQfY|+@_Jc}h>R}g+$Fy5=*MhLST?F7%EA21`p5c*mZw|FYCBsbO-Gk&L{``MLRtT#!(+SZ&PU z;GnFW93zq3S@3uBZJhooak~Gx_4IgylJg!4*K?(~&~LXoYkYkducF$0ePV0N`O5hu zx#CV$&#+|C_=$;$Wg<5>Hy&}Bi5ftVrXte39qD?-gH-!(=s5i8zI+*=ozYUFeSZ>S z5!gkc4oKqd+qZLbbiT{K9x>fT9xvxbJ2WgMMMkdP5>QOKA?$zBG^N(_^8hpSz(LY6 zC6T*)xncolraXhxVms_>CEe1}QeP^c6%?}HA>KR9y#;FE$DiVeh=^O>yTnr3Wx71P zyj8x3yRAn{T+AxZr`~vMjJ53YkE-?3JGa}x0$bJn%4Dkl87uJpg_-XJ#h5eYVtKS= z3_I6@8eEtAa}IyL;eu!mFK)cXW(bx*`}}5=MelRJ0~@c~P+U7WI4GlkeIiv6yM&9$ z)QW=As7$iA)8pYs2={JeW1VhsFBD48!g>nwS9?^)^YQUQtzt*5Z;@JZlb;D?PD3D6 z+eqSvw!`~{X}(PTX8yY}3)um%5hsv&XO#QDhHbCBCuV2qB?pHusbBYg@wdv}XA1K2daq2{g3b+EQ$;cH@wt4;5O$XB#4FWf zUcOjet-`KtHAg&C-ju`G_innV%TY4$N22MN3nC?AQgrIe_-u=*@apZaA%RG4s~q`Y z(T{%I0&>}U(g@z)IDr5o0J7@h#Nm=5DM?t7?_VhZ%b?EdM`a32GSFq8`vfctu1ec^of4f3y|9?7*t}1l+y*2eEaxJTKZ8}emKaUVx?Tz7#)WRCQR-s8Y{6sd6yu>fr7XIN$T0Oga4mt4`a`z z#DanXnWq#oCp+y#5_b0XQDWO(&3bxz^&RG>!w(cW^ayph;!BN7YV`XW>pl_Y&^Wls%maF&_6(W7JpHxs z;^oyiVtYL(zo1~kt`?FJYxGrWYIZKJ(=q?!v87%uK?!F8fMolENr__RDHCronhX}; z75)fQlm10wF-65ff9=iM`GDJ&mIbmd&AOIn#RqG&&r+feEiJvhB)n?`gL`|Awxy$FN%4c3Xa&T?nxOQ8pgTM~%xY}4KJgmnUmj1*$AY5$<+Er~ zKd(iNyq7OI-$M@4uJfp`8u=c{Y#Aogl$yv^-t$s=vAUZ87Bt=Asi_$l z82Hd08+)nTJ)*n_$l1$;p+IV$yCSVY))<~;SJ$JEu6>XsTR{Vv_kC{Fh*gO=fVg3w zXtf)UZlGWZVPIeYUf#~>T1e%NO%QpsIR{LwgyW2uXPyS3SE=0+eX4_EoLKpbq%y+@ z-3#*8kLr}Us=6M)o?H5JxihdUFd;cv5DJ}ggSzJu{wKf)h7!@%POb;V{FPt&&EL(x z>RQ;}N^bplQ+{ItkL5zjU~YxVgO*YNpDx*x8MP%{HW znY635%JOyZOXCL?Jt*e*@Q;VP`=I&3A-Yc7Xk6tih{gY0G*;`V`_pNsXR{8eQmR(* z!s7!Ik97*(Ou2@$cc_NI>q~AG7zv1L%>2YsYwm}DPjGN>zJJQ3{t@Q~E0O_c%I|R9 z|6nNVvP|JkZ5LUKQk9Ss%+71*6vORDK=MKM+xW#nXNt5t#+(#nZ`Wxc0x|~ev2AgC z(wnlNZlmd^CzGN`GYyR2tpOY&(a&BIg{$9GWI;J)R=-7lUc>GdCXk7`dWUjau1kdC z`fbU;)t(#J=CX}plNnHSMIr+}TGM6%stt(^QjM8&%m_Xojm(L~+{*sFyezv=--gm> zL2U}w6w_NXhASIc(crRNHN^aolG7>Hcpt9z*@ngFhApG~`|j0jDTwg91E!a<7bW2X z;QP)%BnfQ!UhT`6Bbj9}v0#6Ta}mQ|PjW#+}qxT^cu_=`mbJNy_; zjt6z_p;-9jhbQ?FGi|uOt{HQ#1TJ$yJkspj8DqRp=kL)iJ9$z?P*y*~dIW*q!);s8 zeOHi-OOo{~zCK(a&*)808L5{$A`^?#L6j&zIONi2)ff|OZI_TqbX}we(+UKuIk)`M z@*k3qE8ni*lYG3rTzoMBRwgx*=}e|=jwuoo=0p#jpglbG`WmaqLyl++%P`Ji_j8kA z{iiS=AN^xxMZ{~{+RMw!)O0=p=W)%{%)Fl8>-(^|O@r_V;}-U(SBNlyaZD`dhE;a| zFfWE%*#I5jwY0R7ISp-XY*^XYR#sQjo!)|YfQG7BB5o_2^X=|$roWRO9*UlpSxy^R zS&7DVh?Q?U=nWWnH<>;kr4F|<3kr$les?77wxS6DE|yUas%>C-*4+;YxSEK4-vYu; z;xPE;+_2mZ(iH9KURS(vVQsB;h_%+cvmoxewP7yNospk-B3E0p-S%ZB)#6(Qz6{_iZ4H&82iL{4v}ZES324@T=wj=oEv1*O+xMnl#@ z_A9Ki_id%$HM?izk3cM_`0Q3MR%$tofftlsg#tNQnOapP$oPcV60|10c=u zwzSW5quX{eRC|%XejMc|zGO>i%_{}))?atbBz+dEV_QXgJswz;R#aBE`uhH~GrHqR z@~EA+&Ai>r$4BfSM>Y>HSPByM_K?cwOwr`@bnmUjZbrFh_u#1{P8KAXT0c#^e&De& z6J?7`T&9k5_lLT~B~cqHS=A;a1SO_G72>nRb6#ioJ}{j@#Ktn$TCDEUb^k~_cg9WG zySm=oa=L&2PU-Q~lG|!|9S~$n=>pTvy&V33JpBJ;Zuk`D z?tgg=g_x|7b+ibw%}0n)ATyP9G&Ed}_8zA9?XFdSeyLYoke?q!T;+dy^68VZ)Q71C z7mu|s1Jl#TM5miX(c%ZopbaiTsq)NixP&|1NYnv+Wj!q8+e!2xHZKI5_4`EZEb=dB z?7Bkz2Bi!UA>pS?QNh9M$54#Q5b9Q%$vk+ly1D5Dn^9k%Dvx_445n~Y@X`w^HH78rTA!t+8gl zF8i&fvAG>!@Pwd=L*3w}LCj+n&^Y|9Bi+ab^Z0@M$z^)@vNCUWex-B9D+9(w&KZe!6&a2ovO1qhaG zQ;nf>sJ<%u^=i31pnF>q9o48|h^Jo*hE4NvhmnLiRK>v9bSSm8qb|udC;1)aF!9KF z(8}?vV~`mb{WQzb_q=8^VR#;P7zzUKr-!zM*DjAutwn}Xcv z=t$8YSNG?yalQ#dDZM+E-)fI5wtW(aiKo8X6k>f==e!dk1u6rjrb`tk%oQUT&QGA|a0rBvy)cp%e=$CVSj&lo@mzkP!gogph~C zF}Jo*lU^Cd!@{F;uwcIcv#J^&ms6RSMI4yJ=q4o@h{@`GF6W2vUxJQ0uZa#Dzcd`x z>l4|zTa#Y)(F`P)z%*oekM?ZR`FJ&n=@x}-6L2Ts0eW9QQ+SGNU$8U)H|RA+SwxCY zf+UQ>Kod^lbyXvU@Ahfp;Dyws@%4+T^TDHE6&J-#!cJCRqR*;E2wp3uf*(*0u47ON z=e#)cWjs3VCiTf}V&jLJgjjgDso(|!$_l#Xa{gCjqcw@J@JK>8st2rRY1#(o@Fe|d zh^3%tc{}_+iULx?Wnh+pn-{AYxAU0sENtSDnj*{6ZoB|7NkvO=2og zR?vdo-yBbS%=!Wd2HZu#p-<-fcD16_Z);IL{>On%iA8Tx_)hl=Wj1;Ca(N)C*~Yb% z<7#rL&dpcTfneHLUT)v@j7A`R9h6hF9|3ktX=!O*G;H~gtw+7BKC1?^X5>g>smLq( zyq8zoN)*@)3-mAY%cJXvEAr3CFyHV&B#-OXT`kPTHtz#wV81_Uh>p8@95RF($g9ksp zSFWmQIdqtwyTl-+FGJ?2uLmGCDmq$DV%Yj-jw;K6AjsK=-vnD59xl9xXbB+S_i%Fd zWohXoa3DcrdJWFkIe#K^n0L)eqkWvX-xn6~mAiVTP0T;u)AU28@fd zTSW88^U1!A{DbCy@8J3tVl!IZ0d-}1`7zX#i$U09iR$BO(98%`X;mFY@!jpkeY3VN;Xt*dolw_q!n7A&!qNEa`Tu z#GpblB^31#!og^eI$k(pJIY$dM@sV6QS$sr&a8y#nX3Hct7CeUVR2{wm+{Xc_$C*y z@E%{(|4T={Bo*n!Q9E}2Y}?CQb?aGgX)We3sl7b#SMKgKKvV)V!Ds-t zCBM}khUBm%Is|o?_9Eng;)c(Gj82SRp$58JQG1DAD+@Cb9isT%x6OMI#r*~e2_BPn zO;8)udEiFLj7UkIpF3|$vUG#H_~=3rpiks7$Hpd`WUVGKR=Iq{y)9065Wea2D={?Q zj^M%&7+uBWm)7$`zII-gS7(ON#!QOdY5f>jvphH#L_9Kz%rjElpt7XF{csT?P|%MC zc`aKWV)8L01lp9?mlLNgwmA@zxjQ+F;epHLOPX~O2n$W$XO=*uW}p&1cu1;VHIR1y zV}D6C)4=@A&{9hKhdWS#+%bvB6k||)Qd-Ld3{l&l!b(6OX1J4gXukzBHUAj0RPXx@ z?xl@oGq^SQzeoU%4_GiW^N;28K0O!zQ}aCJsnIV3(Rj048Z)(im3h6nrN2*Kvaz6u z>wqQZ!RTYeW|%yvBn-O9e>$s$KKJFuP*}|CGuSeB!5>OZeV%nDYyarg7ShS~$%T z-Fhi=Sa?nIHNl!jMn+m%Za)TJfR8FSH@Bswg_TIu_h1{mNr0{;dagcC>-$EC%-7OC zl`bJi^uC6jV&#|L1<>CrMQ5d z<-0o$a#;^;j%}YM0?$SX``h71UKMs4<@RAw3(y+>9fX6_o9gogqQ~|NF5hm4x?Y;B zi1n4d`kMoRK{ZTxlfIUzg^8ShIz2J5 z;woYhtvq7MH&1P&^!$T(^_Gg*0umi`ffQVN)5?zccS(1CexCMZGZY+iLq7@*o$USv zmUo9~*ykPst^H5^R!%>jjrYT>YSVoIkMPdFIrVD!2Zsk!fXvV;>#9rTs96o>%&WVb zy8p)H8ydi5oq~UF6Kq)mpydEN4*I$yXfJ{-zoP!hLcqJhHJPN4fNKs-i&IUT^nma{U*zge4q1Jo!H&^$nt{|RdD=jXS8NkLoi zdY8;D6*qo#4#3XW!gig>%t+@4`P?g+q&@svOg*Y`d?s+IsmJZ_vc%G zZVCv5w9iu-J({O%-Rlf`V(jy)6KrI*J!8e?om+u8i6 zZkgimr40WirWiMhTyj-Z%&J_mJ{-@v-&CJ{7AU0#&jNT?G;Q6u-DmN`H4xSn6cljj z|8hxX`1stvO&(WRSuHWY4;Yn=8o2P<;NVBfrPcjGSTr5)7A}*}cR196;_Kz)v4x&kX1i*C21`XgU4H~`x$ooXb@sTGnDMWIwy{@`g=iFD_u9-44#XTo2T_8`n@?7+o1e9Be(#B;8C@(KHJfKwk=%x z<+k*TWJo%~WGlsh?xL|OLd-AO9Om0Xeb?68eiLC;&Z(OH=O|A~c$u0Sf=1To?*{cw z^Ni7AajB`@NM(ynq9|d48a(YEG88{K0??hXmD$JMfsPKJ>}`Hb4h~X!US9A_LYCuyD&F{-0ty=N_5iQS%<)1S zBt}3Eg*q6#%H`VZ^hkdG5zA`G9dI|`9K?ThkYYaxAdY+f{N;c(B%fZSX3joF8wc;t zccC@TFVVGqr1vk?d^fKe9HKh*&af_?{M&Rfsj0;S_qdWkcz`T&@EBajFYh(*65}=< zZS}6NuX}oW3ZzHLX)p*nyrfAxSdY9(gl%b z^%wjB>d91#Dip^k8)M|Jm>zmp&RS;gD%LDA3^l zjk`Szcx!sHQdZuhSeao(}druzX144 zl5qzal{3Q;$G`J1D1Adi!+ZCxdRhylLruf=AS@87<{5R9I8Q_D{6v4e?FstwUlB&> zSXc3T~VancGo&7E<7nZ)X9YL!->uStCXyOIZ-fnIVT2*^cWvv+Vf znHXz%FJf!je@MI3dh5ImdEiLd(^U-;8>L9#GucH=jP}02dj3uDwR9*Ux`Y%K76$kF z=K`hlmqyK0grUhC2D?y#4Pn^Y+9q)tQVE;5y1H&XbrNrjCExlOyIU=--mHI*`HIbw z@!>fAYOmq^qffurhDyF=05f={^qH(my$ahW75+jj)~kfk(b2~BPNsHiA@P4I4Bzbj z>Y@dGXaDTGa`e3yEPk_$KEO+E?oF zi;yt@nJbs5`G%VvKTf~jbEck=$g*bT<%P1Nz8)*m&C64z9YBm|Wm5|7&OXrvMh7iK zsufWh+J_ZYfkiUk2Si7(<$6nr5)a3f0^#VXKCH9#o_bQ1Cmkb@d!Y|O#m+f*Sp_I&MKG@~Z;cZlB{^5>2hkQa2=VYx!;_FFI zhMXVx>)3sMt5<~QzEWIKA*qAOMb<)OEY%CO#T0CAaO9%$tI_&r*3o6%kZTSyQV9EzX9O(A4w|1pTQbx+y4NS9*bvpwCkx0+-;nBt&>#qw>g(&f7A;pXMoCT%9z7MIIUqvd*hcFq zl+eGykvLygc7y3*RUGhOE%eE5WDlkFgNZjHVVg>4U1ajiC}RvKDCEe8Em~4i0v7Yv zH8o`9+WF8SE(Z`KfP6$8WSG``M1`!3<@^o7I0CpBB3W&$O4W@_5~ts7HSU5x`tAN0!4St_`{9*L1M#XXCP z^4;*BMZ=8^Xj;M|py0;W5QnwAJQ7A%J_Ta6J!{w->B|tStKULJ^7J&Y1L(E?8?Cbs zut1obd-Le`=jh1DJsi;CJ6met#MeT!Rl*1uDM5 zed9ThMdOqUOQFVW@~rN&9J0RoV6+Szl=MMsv#tKFt~L4jiyh&luy~`zwor?#Xqlaz zjqOWt1{vs%GYIyt9CGpW6vi6i~(OBWc(9Z&{vRgtz zLSQjQC2xCgG|TxHm6uykrulR%DAnsam3@0ef#e5B0R+vG7UP_TMQL>W;Uryg zOpz=dGXQ@lPqJ4?auz&&R3tc$Unc#+PK4UW0RQe$wDXgoDWe&WTq#Mj z@H(aIx34d2I!<}#3!t4kxO}&hX%z9lXr8~5AGxzYZ*(LWHXvn|2a*9aPSE1hNrd)l z)See?EPe*Q{`alTVINgvE?ciHSBNc2^Pk@bLyyA-vB;|Chjp5&G(KH99>{17IaKGQ zA&EGMsl(91I7RoaYBHLzfD6ek_#6<~P|I90!@Ep|+|Py+Q}hZg;i;v{V#4*@dBG!J z3)AGZUmVZU#~4TvCk7^aj>cKWQ)yf}VShRnh2LS>blr#%+%LK8*UgqunV7cME|KNm zhtbq7W0UG$ypw6YD`Ru*QY8KLL{PkKG3`vTwD?IKyf4+n#J#A@qa~<8NT1y1w$Pvs zd8Vn@p?3oI+kr0wt9?*$8&zvt zhk##Op@J7R^K8P>wJZA_yQ&O>Q0zKqeJ9Df(sGvoE-Pn=Pmhk)ns*VV_qi|iB;wHe zIDsEwWMpKZ3qsKD$5cLWz(cQ}CHeRJP&h!fHDayswLt3zufM3Qe#6%@VQE5e5r0Cf z*IW{aet8v@I{osX7yz~)f}tDige-wB0n|L+>hEu5#r%Z0FtFLUkl9+l^Xo35DB7Fl zVsZEsMs}4mx_%^VQ!nP9rWjG4Gb`p@Axj{j&e{dQ;elz-CQ2@a z9}E|jmOlN(`tF6+4fUOoGcRO>$W29%HivvLub=TI|2?#Bc{5^Ve#$SgO}Jb+$aYoR zmmkGWWIY+?Mn*FCFv;-0IVK%$#wIiXG{`f0YD-2CFvyl+b6^{H(Z-^e7I$!sphmp^ zCJE)Ti;IfBR9g|PE}w*GGX_v_-d9Yh!4EYGEfbH9 z0gYRt+^po%e08sK;n2wNu-#14xMj7?O`u3dq1}#HYIkE+LPSKt{~1bN-jw9NpKskr z8R<`1>yRK+sgrdyPrIWGik%(ptZQfZnbF7^tSVwcbunksZ-fsw)nxPU1w(Y#hXU!R-u0xB|8uA0AP;hK(bxGZqXJ9ynMgwRmr(FVit%N0qOooLJuS{?p0s4*orX*`tY244gzG91aX0vel-!~%S+LI%Q zt5W>x)O8+U(@Ex$j(U1OH~1!&4<>@ysWo<@f1jXarQm4@#o(PH*|&IQ*DKftep3$X zMd9kBNaq+4LOjQQ53;#yOoMpN*TkG)Ps$^hm-V;6J}=xK66=q0`%PI8L^0_0Mfto? zPX6(zi5D9!PZ|*X1dlMdoLEb`tO$lIvQ5d9*0J!O4xeL&LqQV6QzHY>Ap;4Tw?d#Z zZ-Ei<=&@}+$u?hTkvH4)&EZL@++Jt6cZx>0)F(E%L-S*4bJX@tP5l^aeyI%(?$FnZ zBiUfPUW#!99zrjy_-IJYT=E@*+u8UZ#ojXdmB~m^!jAeoD&VHHQ!;k8m;HQH{6HOu zGw9NKh#|%uI^vz!w@#xxJ}e7vBV{&QdecmWIm}T-P42r!DHqiU)LF=E9UOKai9we~ zQ4tFWMF$I&H)4ptDwT$5)*Izg4Jr(XgDnO7t`RD-$k6?Nx=7v(#JU!z5%m z1~1l<&8M+dLkcppCPCyMNSN;b?>diIqx1W|?_TT;uD{a)TyiC0zzeuQMq^{+hZjY) zw)tx{ai3eP`X^CAdl~boF<8Zgh0M2ZP20XEk%E3*djSI#mCuXqM*%zIDa z8PtEjD4MGwk%EPBwlHbF6{4g*{1=l@QEn%jUnl8}URBW@8@k zKXv8P_w*EACDx7LDF@4R5<5fpjo*Y%-B=Y^l4|h1mbiWsnqSMT30kWHPd_ycO_bQx zD^~_=U&j-*zh+3f3=_w1909GR${zyJJp|m`+(JSqS}(C{SSm;@qI|8`811mk7%WyU zE=OR64eA_j`JWsGfG9^RZdW&{hl5oeeAez-sR)ctnK`Os!~gUUI=zXAh#s89prd6u ziN<|P`mT05s(*B`LQ5x{4JH24#0Pc+0^>3IdjUYR)ViB|lQ>^12ksgC7Ts^3aOVRL zwBV~=!`fZMuZ&xWlmz>x%xu3y_4rR{ZSXYD&~tR$07DS8ju(|k(1_A=cCuEAG@~A< z|MK@D|6)<+cYFZ)bC*LMx+~(d|A~u+#t`%x>*DYaL`t4ObFYx+R(`juZ)Iv1t^br+ z<*Tsm5J0=Vy}e+qC%h_@{ak{E60X{}x%I}MdWqQ@JxBNvorS3(<|24XBXRpLj3qjB8U3Ig5>29i|eU}$OOgua| za21&bDG)lHE6qA13>+GQmC6KP*-zF&o&zx3T3xO2Kd&TEO#eRd>UbIts$z^9KNvjk zKeCP%nN`GobwGzVS;IgkDU@`EP=3*POy$5l{mT>G5pGs^K;Kz^o7sR5+Y=n2@RbDV z@O=RvKYbDhq+8c|ybe2q!=Uy9)pc6vB4n8T@e?|$mU@H7!!*JaW6AT$3-W6MksS)p z_^=zGzbY+_>fm>#$ISlR6C!w9-Bb*MC)WA6Wci$Nr|`4*!r4;4h5%)pLfzbkKJ zj*=={e3VBADE|K<35V?AK4g_@iW$vU*C&wwmlQdWcvVqB0lg5S0;gL2PnVai<>k9U zP~MrDF)AF|hccw_#fwD9p^1r=&%A7*o?tr~swDoZo`GFD^t6VF{ClBJfZ%%)Np1Ad zK?4Q{0Ccpkqa|EnftUywYzKjj5{U%`EMekjgYV&sC2p(!|9r8;|Ks;i{6C%^d`i2e YktcQW-1ckqmtn}uDBpQ0WfJ(m04Ig`C;$Ke literal 0 HcmV?d00001 diff --git a/_build/quizzes/quiz3-BVPs.html b/_build/quizzes/quiz3-BVPs.html index 08572da..15e6062 100644 --- a/_build/quizzes/quiz3-BVPs.html +++ b/_build/quizzes/quiz3-BVPs.html @@ -3,7 +3,7 @@ - "/quizzes/quiz3-bvps" title: |- Sample Quiz 3 problems: BVPs -pagenum: 17 +pagenum: 18 prev_page: url: /quizzes/quiz2-IVPs.html next_page: diff --git a/_data/toc.yml b/_data/toc.yml index df49a6c..82f6b7a 100644 --- a/_data/toc.yml +++ b/_data/toc.yml @@ -48,6 +48,7 @@ sections: - url: /bvps/shooting-method - url: /bvps/finite-difference + - url: /bvps/eigenvalue - divider: true - header: Sample Quizzes diff --git a/content/bvps/eigenvalue.ipynb b/content/bvps/eigenvalue.ipynb new file mode 100644 index 0000000..34f749c --- /dev/null +++ b/content/bvps/eigenvalue.ipynb @@ -0,0 +1,167 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Eigenvalue problems\n", + "\n", + "\"Eigenvalue\" means characteristic value. These types of problems show up in many areas involving boundary-value problems, where we may not be able to obtain an analytical solution, but we can identify certain characteristic values that tell us important information about the system: the eigenvalues.\n", + "\n", + "## Example: beam buckling\n", + "\n", + "Let's consider deflection in a simply supported (static) vertical beam: $y(x)$, with boundary conditions $y(0) = 0$ and $y(L) = 0$. To get the governing equation, start with considering the sum of moments around the upper pin:\n", + "\\begin{align}\n", + "\\sum M &= M_z + P y = 0 \\\\\n", + "M_z &= -P y\n", + "\\end{align}\n", + "\n", + "We also know that $M_z = E I y''$, so we can obtain\n", + "\\begin{align}\n", + "M_z = E I \\frac{d^2 y}{dx^2} &= -P y \\\\\n", + "y'' + \\frac{P}{EI} y &= 0\n", + "\\end{align}\n", + "This equation governs the stability of a beam, considering small deflections.\n", + "To simplify things, let's define $\\lambda^2 = \\frac{P}{EI}$, which gives us the ODE\n", + "\\begin{equation}\n", + "y'' + \\lambda^2 y = 0\n", + "\\end{equation}\n", + "We can get the general solution to this:\n", + "\\begin{equation}\n", + "y(x) = A \\cos (\\lambda x) + B \\sin (\\lambda x)\n", + "\\end{equation}\n", + "\n", + "To find the coefficients, let's apply the boundary conditions, starting with $x=0$:\n", + "\\begin{align}\n", + "y(x=0) &= 0 = A \\cos 0 + B \\sin 0 \\\\\n", + "\\rightarrow A &= 0 \\\\\n", + "y(x=L) &= 0 = B \\sin (\\lambda L)\n", + "\\end{align}\n", + "Now what? $B \\neq 0$, because otherwise we would have the trivial solution $y(x) = 0$. Instead, to satisfy the boundary condition, we need\n", + "\\begin{align}\n", + "B \\neq 0 \\rightarrow \\sin (\\lambda L) &= 0 \\\\\n", + "\\text{so} \\quad \\lambda L &= n \\pi \\quad n = 1, 2, 3, \\ldots, \\infty \\\\\n", + "\\lambda &= \\frac{n \\pi}{L} \\quad n = 1, 2, 3, \\ldots, \\infty\n", + "\\end{align}\n", + "$\\lambda$ give the the **eigenvalues** for this problem; as you can see, there are an infinite number, that correspond to **eigenfunctions**:\n", + "\\begin{equation}\n", + "y_n = B \\sin \\left( \\frac{n \\pi x}{L} \\right) \\quad n = 1, 2, 3, \\ldots, \\infty\n", + "\\end{equation}\n", + "\n", + "The eigenvalues and associated eigenfunctions physically represent different modes of deflection.\n", + "For example, consider the first three modes (corresponding to $n = 1, 2, 3$):" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGkCAIAAACgjIjwAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAAB3RJTUUH5AIZEw0aQHwiXwAAACR0RVh0U29mdHdhcmUATUFUTEFCLCBUaGUgTWF0aFdvcmtzLCBJbmMuPFjdGAAAACJ0RVh0Q3JlYXRpb24gVGltZQAyNS1GZWItMjAyMCAxMToxMzoyNo3D97MAACAASURBVHic7d1/UFvXmT/+g5KAcGpXKDZGybKRrITGP6atiRVvmcxaaC1o6pAm7k5KS11QJpldOzifTNxsmuBZGRuyLVnv7BaCt2kdcFzHaush1LVTcG1QurEbBwyDYyM3sZDcxCUxWBB/Kcg/hL5/HEdVAIMkru4559736y+Er8Tj+1zp0flxz0kJh8MEAACANQ3rAAAAAAhBQQIAAE6gIAEAABdQkAAAgAsoSAAAwAUUJAAA4AIKEgAAcAEFCQAAuICCBAAAXEBBAgAALqAgAQAAF1CQAACACyhIAADAhZtZBwBxCwaDP/3pT/V6/bp161jHAtL4v//7v9///vcff/zx0qVLHQ7HvHnzWEcEEvjNb37z1ltvBYPBlStXfve7373llltYR8S7FGw/IZz6+vonn3xyyZIlp0+fZh0LSKCqqurf//3fI+9Eg8Fw/Pjx7OxstlHBLD322GMNDQ2Rh/fee6/b7f7CF77AMCT+octOJPX19SUlJRs3bmQdCEjm/fff37JlSzgcdjgc27Zty8jI6O/vr6ioYB0XzMpbb73V0NBw8803P/fccz/5yU/S09NPnDjx2muvsY6LdyhISfTuu+9ardaSkpKf/exny5Yt0+v1Dz744IcffpjwCz755JOvv/76+Pi4hEFCvKRN6+HDh0Oh0NKlS1999dXNmzc//vjjhJATJ05IGjLMTNq0/uEPfyCE3H///T/60Y82btxYWFhICDl37pyUESsRxpCSaGBg4K233tJoNK+//npqauqVK1cOHjz45JNP7t+/P/qwCxcunD17dvLTv/KVr9x6663Rv3G5XISQlpaWxsbGZAYO05E2rfPnz1+7du39998feRYh5Pbbb0/m/wCmIG1an3nmmQ0bNmi12hMnTrz99tttbW2EEFqWYDphSJoDBw7Qk/xf//Vfly9ffuKJJwght91224TDXn311SlTc+LEiSlftq6ujhCyZMmS5P8PYApJSmsoFNq2bRs95pe//GXy/x/wOUlKq81mowd8/etfv3r1avL/H2JDC0kO3/ve91JTUx944IGf/exnQ0NDE/71q1/96ubNmyc/64477pAlOkiQhGn1+Xzr1q07evToTTfd9KMf/ejRRx9NSsQQA2nfrc8///zq1av/8z//s6Wl5amnnqqvr5c+YgVBQUq6OXPmLFiwgBByo7m8ixcvnnKegl6vT25kMAsSpvUPf/jDQw899Omnn+bk5Lz22msrV66UPFqIkVRpfeaZZ95///2nnnqqoKBg9erV4+PjmzdvfuONN1CQpoeCxN7evXsfe+yxyb8/ceJEbm6u/PGAJGJM6/nz59esWTMyMmK32994440Jo4bAmxjT2t/ff/DgwZSUlNWrV6ekpLzzzjuEkNtuu02+QMWEgsTeokWLvvOd70z+/fz58+UPBqQSY1r/53/+Z2RkhBDS3t6emZlJf5mRkfHRRx/JECTEK8a0PvbYYy6X68CBA8uWLRsbG/P7/YSQsrIyWWIUGAqS3DSaiVPtV61atWrVqthfISUlRdKIQAIJp/XUqVP0h2vXrl27do3+nJaWJm14kJiE02q32xsaGp577jmPx0MImTdv3r/927/94Ac/SEqUCoKVGgAAkuWjjz66fPmy0Wi86aabWMciABQkAADggtgrNfT29tbW1rKOAiSGtCoS0gozEriFNDg4WF5ePjIyErmjDRQAaVUkpBViIeqkhrVr1545cyYUCt19992sYwHJIK2KhLRCjERtIZ0+ffrKlSv79+/v7Oz87W9/yzockAbSqkhIK8RI1DGkpUuXLl++fPrFddzeYdniAUnEklbh4DpUZFoJMpsEonbZxWLNNtfq28fttwuzWUNtba2Iex2Vl5fL+efWrVsn0OI67rNDJxb80/1ndggUc4RsmaXrBQvnmdML0y++/8SyVKM+nXUscZD5DRsXJRek9Yv+vxPzV18065yFJtaxxKS2tpbna2VK8n+UrFy5UpSz5PYOb3f1NhQvOfU7YWKOkDmzwp0fQoh/60tzH/5uY2d/2d0GUT5kOK/9onbZxcKoT28oXuz2Dle2+ljHAqrT2NHvcPX6KvKsZh3rWCApjPp0Z6GpfX0uIcRUfQw9eLOn5IJECDHqtQLVpD/96U+sQwBpOFyeXR0f+yry6EMRv/7DjGhajXqts9DUULzE4eqtbPX5A0HWcQlM+II048JuRr22fcNyQogQNQkoodfrc7g8/kCQXnUQTei0Ts9q1tHvH/k7uvBRkzCxC9Ljjz8+YYPhGym1GAghDpcnyRGBBGJPK4fy67sJIahGkwmd1hjRHjz/UNBUfQxNpQSIXZBiR5vVxgytqfoY61hAsfLru2kvMetAgBl6ATgLTA6XB02leKmlIFHOQlPZCgO+vIDk/IFgfn13qSUL1QgIIWUWA20lm6qPoSzFTl0FiXxWk/J3dKEmgVT8gWD+ji5noanMYmAdC3CE9uC5vcN0WJF1OAJQXUEihDgLTc4CE2oSSMIfCJqqjzUUL8H0bpiM9uAZM7SY7BALNRYkQhvU63Pzd3Th1gGYDbd32FR9rH1DLqoR3AgdwI7croTvwdNQ8koN0zPqtb6KvPz6br8lCz0tkAC3d9jh6g1vt7EOBARAy9Kdeq3D5bGKs3yMzFTaQopoKF68q+NjNKUhXrQaNRQvYR0IiKTMYqDTXrCyw5TUXpDEWsoBOIFlgSBhkR48urID63D4ovaCRD5byqGxsx8XB8SisaM/elkggATQIQOCeeGfh4J0HZ2diSsDplfZ6tvV8TEWYgBJ0KYSvg1HoCBdF7nBHlcG3IjD5XF7h1GNQEJGvTYyAQ8fPihIf2PUa7HkHdwIlkyFJImMKqGphIL0OVjyDqaUX9+NagRJFT2qpNp7lVCQpoAl7yAaXTIV1Qhk8NkEPJUuzIqCNDUseQcUFvAGmUWuNxV+J0ZBuiFnoclXkYeapGb59d3tG5ajGoHM6NgB/fxRVVMJBWkGDcVLUJPUibaNWEcBqqa2mQ4oSDOwmnV0GVbWgYCs0FMHPIieFM46FjmgIM2MXhP59d1Ye0olUI2AH7T7rqF4iRpuVEJBign9eKps9Sn+ggBUI+AQ7apRfPcdClKssAyrGuTXdxNCUI2AQ5HuO3qVKhIKUhxoTVL8lxTVou9z3G8E3KKryVjNOqXOCEdBig+9mxrtJOVBNQIhRM8IV15N4nTH2FAo1Nzc7PF49Hp9UVFRdnb2hAPGxsaampr6+voMBsM///M/63SybkvTULzY4fKQVh+2fYwLt2lFNZoNbtOqbHT2b9kKg5I+hThtIZWXl1dVVV26dKmlpaWoqKivry/6X0dHRx955JGf//znY2NjLperqKjo0qVLcoaHpcETw2da6Vq6qEYJ4zOtikeHlBTWW8NjQTp9+nRbW9v27dtramr27duXmZm5c+fO6AP27dv3ySef/PrXv37xxRffeOONUCi0a9cumYOMLA2upKshqbhNK1ZNnQ1u06oGyhvV5rEg9fT0pKenW61WQkhqaqrNZuvp6Yk+wOv15uTkzJ8/nxAyd+7c5cuXnzx5Uv44aWcuwXYVseEwrW7vsKn6GKrRbHCYVlVRWDuJx4IUCAQyMzM1muuxZWVlBQKB6AMWLlzo9/tHR0cJIaFQ6IMPPujv72cQKCGEkFKLwZihRU2aEW9pdXuHHa5e7EQ+S7ylVYWUdEcKj5MaxsfHox9qNJpQKBT9m4cffvinP/1pWVnZmjVr2tvbP/nkkzvuuGPy6zQ1NR0/fpwQsnv37uRFS9tJla0+h8ujnvtX1q1bR39YuXJljE/hLa359V3tG3Jn8wqKFG9mpUpr5O8m9d2qVLQmOVwe5w0OSOANywSPBSktLY1+n6JGRka02s+tcXn77bf/+te/fvXVV48cOXLffffdfffdZ86cmfw6a9euLS8vT3q4hBBCaN+dqfqYSr5xRz416urqYnwKP2n1B4Km6mPtG3KtZkz3mijezEqVVtShWaI1yVR9bMp5dwm8YZngsSBlZ2cPDAwMDg7SfmePxzNhIunZs2dPnDjx4osv0o6CRx99dNmyZWxi/Ty6rZ9KalK8+Emrw+VBNZIKP2kFOp7kcHlWeYcFvbx5HEPKy8ubM2fO1q1bz58/f+DAgcOHD9vtdkJIRUXFnj17CCF6vb6mpuaVV165ePHiL37xi5MnTz788MOsoyYkaqtZ1oHwiJO05td3W806Qd+uHOIkrUB91nfXK+pK0GEuHTp06L777svJybnnnns2bdp09erVcDi8bNmyp59+mh7w+uuvr169Oicn595773399denfJHa2lr5Io6ypaXPWHWUyZ+WX1wnmXlarS93WV/uSvjpqhL7eZ59Wlm9VZWq/eyQseqo7+LY5H/i/FRzWpDC4fD4+PiFCxfGxqY4pxGDg4Pj4+M3+leGp57WpCkvCIWJ9yQzTOuWlj5Uo9jFdZ5nmVbOPyVFdKOrnfNTzWOXHZWSkrJgwYIJA6QT3HbbbSkpKbKFFDvad6fIxaZmiVVa3d7hxs5+3HKUJEK/WxVJ0Nv2+S1IonMWmpwFJtQkTuTXdzUUL2EdBYBMIjcnsQ4kPihISVRmMSh1UV6x5Nd3Y1odqI1Rry21ZIk1xwoFKenQd8cWXckb1QhUqMxiMGakN3YIszQGClLSRcaTWAeiRm7vsH9oDENHoFoNxYsrDwkzkoSCJIfI/UloJ8nJHwjm13fhPmVQM6NeW7bCIMrsBhQkmWDenfzoigysowBgrNRiaOwUo9cOBUk+qElyqmz1GfVaDB0BGPVaqzlDiJEkFCRZYTxJNo2d/epZfB1ges4CkxAjSShIcsN4kgzy67tx1xFAhFGvNWak839bEgoSA+i7Syp01gFMZjXr3jo7xDqKGaAgsYG+u+RBZx3AZKvuykALCW4Ie1UkAzrrAKZkNev8Q2Oso5gBChJLqEnSQmcdwDSMGemsQ5gBChJjqElS8QeCWw75nAUTN28GAFGgILGHmiQJh8vTULzYqJ9uBwQANeP/3YGCxIVSi6FshcHh8rAORFR0zboyi4F1IACQOBQkLhj12lKLwZihRU1KTGWrD3MZAESHgsQLWpP8gaAoyyDyBnMZAESHgsQRo17bvmG52zuMmhSX/PpuZyHmMgAIDwWJO3TjYdSkGNF7/dA8ApiR24uVGiBORr0WNSl2la0+NI8AYsH/WmUoSDyK1CTWgYgBzSOAWPA/7ftm1gFMLRQKNTc3ezwevV5fVFSUnZ094YArV640NzefOXPmtttue/DBB++8804mcSYPrUl0dEQxH7iSp9Xh8pRaspIWL8QE71YhOFweZ4Fp5DjX62dy2kIqLy+vqqq6dOlSS0tLUVFRX1/fhAMef/zxl156KRgMvvnmm0VFRR988AGTOJOK1iSHq5f/hnaMJE9rY0c/7j1iDu9WIbi9Q1ZzBusoZsBjQTp9+nRbW9v27dtramr27duXmZm5c+fO6AM+/PDD48eP19TUvPjii/v27UtNTX3zzTdZRZtURr3WWWBSxqLgkqe1stW3BQsFsYZ3qyj8gSD/XXY8FqSenp709HSr1UoISU1NtdlsPT090Qd88YtfvOmmm4LBICHk6tWrV69enT9/PpNQZVBmMTgLTApYWEjytDZ29mM6A3N4twqBLqzFOoqZ8TiGFAgEMjMzNZrrxTIrKysQCEQfMG/evOeee+4HP/jBG2+88d577y1duvThhx9mEalMyiyGc4GgqfqYryKPdSyJkzatjR39/Pc/qAHerUJo7BBjkzAeW0jj4+PRDzUaTSgUiv7NpUuXfv3rX2dkZNxxxx133XWXx+M5dmyKBkRTU5PNZrPZbMkNVxZ0AVZ+FhayfSb2p0ib1v/30qurlDLXgyvxZlaqtCZwRUGMHC7PvYNHhDi9PLaQ0tLSRkdHIw9HRka02s91fbrd7j//+c+///3vFy5cSAh56qmnfvazn9nt9gmvs3bt2vLychkClkepxVB5iJc7k9ra2ugPdXV1MT5F2rSaqo9hOkMyxJtZqdIa+bsgLX8g2NjRH95VTR/G/oZlgscWUnZ29sDAwODgIH3o8XgmTCT96KOPbrnlloyM6z02S5YsOX/+vNxRyu76BIf6bkFvmJUwreiv4wferZwTZfSI4rEg5eXlzZkzZ+vWrefPnz9w4MDhw4fp96mKioo9e/YQQlasWDEyMrJ9+/a//OUvJ0+e3Lt379e+9jXWUcshcsNsY0c/61jiJmFazwWCxgze5wupBN6tPKMfFCL1JYS5dOjQofvuuy8nJ+eee+7ZtGnT1atXw+HwsmXLnn76aXpAQ0NDbm5uTk5OTk7OE088EQgEJr9IbW2trEHLxXdxzFh1lHUU18V1kqVKq7HqqO/imCTxw43EntnZp1Wpb1XmjFVH288ORf+G81PNaUEKh8Pj4+MXLlwYG7vh504oFPrkk0/++te/3ugAzk/9bLSfHeLkQznekyxJWskzR+L6o5CAuDI7y7Qq+K3KkPXlri0tfRN+yfmp5rHLjkpJSVmwYMGEAdJoGo0mMzNzzpw5ckbFCatZJ+gNs7NPK1Zn4BDerbyhI83C3ajHb0GC6ZVh13MAmIrbO9zY2d++YTnrQOKGgiQwZ6FJhTvMfjA2R6BZQwAy8weC+fVdDcVLWAeSCBQksTUUL27s7FdVTRq7LYd1CACc8geCpupj7RtyBd0iAAVJbEa9tn19rts7rJ7Nk67OuY11CACccrg84lYjgoKkAEa91llocrh6WQciE/5XLAZgIr++u9SSJW41IihIymA168pWGBSwIngsjBnprEMA4E5+fXf7huWiT0BFQVII3lZfTR60kAAmoG0j1lFIAAVJOUotBhVOugNQM38gSKuR6G0jCgVJOSIr3Sl7ggNWsQOg6Jw6xVQjgoKkMJEJDv5AkHUsAJBEbu8wneGtmGpEUJCUh05wUMNgEoBqub3DDlev0DO8p4SCpEDCLWAFALGrbPU5XL3t65VWjQgKklI1FC82VR9T9mASgNrQKQxu77CvIk+R001RkJSJruCgyMEk/5DS/kcAsfAHgvk7uqxmnYirpsYIBUmxrm95LuAWFdNTXokFmBGdwtBQvETZHfIoSEpWZjEYM9JxZxKA0OigUXi7TXmDRhOgICkcXQ5cSYNJ/qEx1iEAyIQOGhFCfBV5rGORAwqSwhn12obiJUoaTFLMfwRgem7vcP6OLmehSdnddNFuZh0AJB3d77zykE8Z+9rdMnqRdQgAyeUPBCsP+fyBoEoaRhFoIamC1ZzhDwQbO/pZByKBW8YuKqkHEmAC2jAyZmgVPJvuRlCQVIEuc0e/c7GOZbbSL37w1tkh1lEAJAWdv6D42XQ3goKkFnQWuAKWFLKadWghgfJEz19Q/Gy6G0FBUpEyi8Go14o+C9x6VwYm2oHCVLb68nd0tW9Yrs6GUQSnkxpCoVBzc7PH49Hr9UVFRdnZ2dH/eubMmT/+8Y/Rv/niF7+4du1aeWMUEm0krfIOM/kKJlVajRnpbkb/BZgM79bZ8AeCDpfHqNeqbf7ClDgtSOXl5e+8847dbn/33XdfeeWVpqamRYsWRf71ww8/bG1tjTz0er1ZWVm4xGNh1GtLLVkOVy+Tq1+qtFrNurfODqEgcQLv1oRVtvoaO/sbipfgYr4uzJ9Tp07l5OQcOXIkHA5fvnzZbre/8MIL0xx87733dnV1Tf6n2traJEYpsrK9vVta+iR5qdhPsrRptb48xT+BhGLMrCRpVeFb1XdxzFh1tGxvr8x/l/NTzeMYUk9PT3p6utVqJYSkpqbabLaenp4pjxwbGysvL//Xf/3X5ctVNz9yNpwFJvk3lpU8rZjawAO8W+PlDwTpiFFD8RJl3BooIR677AKBQGZmpkZzvVhmZWUFAoEpj3zllVcIId///ven/NempqampiZCSFtbW3IiFRXtuKts9VkTvdHBZrPRH2Lve5E2re/duvwtczk6OiQXb2alSmvk7yr73er2DufXd20pMMncZ57AG5YJHgvS+Ph49EONRhMKhSYfNjw8vHPnzoqKitTU1ClfZ+3ateXl5UkJUXxlFsOujo8TfnrkU6Ouri7Gp0ibVrd3uLLV54wnZohFvJmVKq3KrkPks8kL/qExJtu8JvCGZYLHLru0tLTR0dHIw5GREa12iq2oDh48GA6HH3jgARlDUxS6iZ9st8pKm1b6lkavHXN4t8aistVnqj5mNevUfI9RLHgsSNnZ2QMDA4ODg/Shx+OZMJGUOnjw4P333z9v3jx5o1MOeqts5SGZbkuSPK2llqxdilgMSWh4t04vssdreLtN5fcYxYLHgpSXlzdnzpytW7eeP3/+wIEDhw8fttvthJCKioo9e/bQY8LhsMfj+fKXv8w0UuHRNe7kaWdInlarOcPtxRpCjOHdOg06ecFZaFLhqnSJ4bEg6XS6mpqa48eP22y2Z599ds2aNSUlJYSQ/fv3d3Z20mP6+/tHR0fvuusuppEKz6jXtm9Y7nD1yvC3JE+rUa+ld8gmMWiYCd6tU3J7h1M2tRF1rwOUAB4nNRBC7Hb76tWrBwcH586dG+mSfu+99yIH3H777X/6058YRac0VnNGZatPhv4EydPaULw4f0cXbnFnC+/WaGwnL4iOxxYSlZKSsmDBgikHSEFazgJTY2e/PLMbpE0rGkmcwLuVon10mLyQMH4LEshG5tkN0nIWmkRfLhYUwO0dNlUfI4T4KvIweSFhKEhACCFlFoPbOyRiUwPzv4EtOo+Org+JUjRLKEhwnbPAJM/sBsk5C0WNHEQX3UfHOhYlQEGC68osBmNGuojbnFvNOowkgcxoH53bO4yGkYRQkOBvnIUCjyShkQTyoPPo6EbjuMFIWihI8De0qSFoI4lOXmcdCCgcXQTImKHFPLpkQEGCz2koXixqI0nGyeugQv5AkPbRYRGg5EFBgs8x6rVWcwbrKBJh1GvLVhgErabAs+gdjNBHl1QoSDCRs8BE76gQTqnFINvSfKAStI+OYBEgWaAgwUS0kSTiSJJRr20oXozZDSCJyELdmEcnGxQkmIK4CzfQjjuHy8M6EBAb7aMrtWS1b1hu1Kt9SSTZoCDBFMRtJBFCnIUmdNxBwqIX6i6zGFiHoy4oSDA1cRtJhBB03EECIosAtW/IRR8dEyhIMDWhF9JGxx3ECwt18wAFCW5I6HYGnXHHOgoQACYv8AMFCW5I9EZSQ/Fieicj61iAX9hlnCsoSDAdoXcbovs8idvIg6SK3sEIfXSc4HQLc+CEMUMr9JzXMovhXCDocHkaihezjgV44Q8Ed3X0N3b2NxQvQSniClpIMB2jXrvKrBN6dgCdBS5uOw+khYYRz1CQYAZWc4bbO8Q6illpKF7s9g5jMEnl6PcSzOrmGQoSzEDoqQ2UUa+lGyZh3p1qoWEkBBQkmFn7huWid3lZzbqyFYb8HV2sAwEG0DASBaeTGkKhUHNzs8fj0ev1RUVF2dnZk4/p6uo6evRoenp6YWHhlAeAtNze4Vl+tWSbVvphhAkOkuP53eoPBPN3dJWtMPgq8mT7o5AwTltI5eXlVVVVly5damlpKSoq6uvrm3DA3r17v//97586derw4cN2u93nE/v7O/+sZt1bZ2c7ksQ8rfRuWdFbe7xhntYbiWxihIaRMML8OXXqVE5OzpEjR8Lh8OXLl+12+wsvvBB9wKVLl5YtW+ZyuejDkpKSH//4x5Nfp7a2VoZoVcJ3ccxYdXTy72M/yZyklf5HtrT0zeZF1CDG8yxJWiV/q/oujllf7irb2yvtyyoA55+KPHbZ9fT0pKenW61WQkhqaqrNZnv77bejD3C73Wlpad/61rf+/Oc/X7t27bXXXtNoOG3qKUZkakPCvXacpNWo17avz3W4PKtm3QMJhJu0fu4veocdrl700YmIx4IUCAQyMzMjV21WVlYgEIg+4MMPP9Tr9d/+9rd7e3vHx8fNZvP//u///v3f//2E12lqajp+/DghZPfu3fJErmyllqxdHf30Q3zdunX0lytXrozx6fykla4qlL+jq319rtC3/SZDvJmVKq2RvzvLd2tlq6+xs799fe5sXkR5EnjDMsFjw2J8fDz6oUajCYVC0b/59NNPz507l5ube/LkySNHjly7du0//uM/Jr/O2rVrd+/ejWoklegbknZ/Jvanc5VWo17bULwkf0cXJoJPEG9mpUprAlfUZPn13YQQX0UevmdMIMnplQGPBSktLW10dDTycGRkRKv93OV16623ajSaTZs23XLLLX/3d3/3ne98p6OjQ/YwVYf22iX8dN7SajXrnAUmTASfJU7SSnfVcxaaMH9BaDwWpOzs7IGBgcHBQfrQ4/FMmCe6aNEiQkjki9i1a9duvpnHvkflsZp1CU9R4zCtZRZD2QoDvV8SEsNDWiO3GWFQUHQ8FqS8vLw5c+Zs3br1/PnzBw4coFNFCSEVFRV79uwhhKxateoLX/jCtm3bhoaGTp069dprr/3TP/0T66hVodRiaOxMcF9zPtPqLDSVrTDQrh5IANu0Rm9lhGqkADwWJJ1OV1NTc/z4cZvN9uyzz65Zs6akpIQQsn///s7OTkLI3Llzd+zY0d3d/Q//8A+PPvrol7/85eeee4511Kowm147btPqLDRZBV9AliGGaaU3vVrNOmxlpBic9nTZ7fbVq1cPDg7OnTs30iX93nvvRQ5YsWJFa2vr8PBwenp6WloaozDViPbaJdZTz21aSy2GXR39WMQhMUzS6g8ETdXHwtttkrwacILHFhKVkpKyYMGCCQOkE+h0OlQjma26K2M2C63ymVajXltqMRgztGgnJUbmtLq9w/k7uto3YG630vBbkIBPxgytf2iMdRTSozXJHwiiJnGusaPf4erF3nqKhIIE8VHAbhQ3Qm+YxZ1JPGvs6N/V8TGmMCgVChLETZKFVvl0fRGH+m4swMohWo0wXzvbXwAAIABJREFUhUHBUJAgbrMcRuIcrUlu7zBqEldQjdQABQniptRhpAjUJA6hGqkBChLETcHDSBFGvZZ+/KEmMUd3H0c1UgMUJEiEUa/1B5TcSKJKLQaCmsQU9pJQFRQkSIQxQ3tOBbPR6FxwgprEiNs7nF/f1VC8hHUgIBMUJEiEs9Ck7C67iEhNwv1J8sOSqWqDggQJUva8hmhGvdZZaMI6DjLLr+8uW2FANVIVFCSAmNCahHXB5UH7SLG5kdqgIEGCZrNZn6DouuDYP0kGjZ39mFanQihIkKDZbNYnLmehyVeRZ6o+hhWGkie/vhsTGdQJBQkgbmUrDPk7ulCTkqGxo58QgqEjdUJBggQpewGh6TkLTc4CE2pSMmBXKjVDQYIEWc069Uy0m6zMYmgoXoKaJK3KVt+WApNRP92+SqBgKEgACbKade3rc/N3dKm2pSi5xs5+etcXqBMKEiQOjQOjXtu+Prey1afC+R2Sa+zot5oz0DxSMxQkSBw+OwiWBpdO5SGfswA3HqkaChIkToW3Ik2JLg3e2NmPmjQb/kAQX3FUDgUJQBrt63PRTkpYY0d/GUaPVA8FCRKH77PRaN8dwdLgCUF/HRBCbmYdwNRCoVBzc7PH49Hr9UVFRdnZ2RMO6Orq6unpiTy02Wx33nmnvDFC3BSfVroMa2WrT1U300iSVvTXAeG2IJWXl7/zzjt2u/3dd9995ZVXmpqaFi1aFH3A66+/fvLkSZPp+leqZcuWifXJpU4qSSutSabqYyrZVk6StKIaAeGzIJ0+fbqtrW3Hjh02m+3KlSsPPvjgzp07q6uro485c+bMv/zLv3zrW99iFSQQQowZWjIY68GqSitdploNNUmqtFrNGUmOFATA4xhST09Penq61WolhKSmptpstuj2PiHk6tWrfX19Op3uzTff/OMf/3j16lU2gUI81JZWuryQ4pdhVVtaIal4bCEFAoHMzEyN5nqxzMrKCgQC0Qd4vd5QKPT000/fcccdH330UXZ29u7du+fPnz/hdY4fP05/KC8vlyFsVamrqyOEHB9a8I2Yv9eqMK1lFoNRn56/o6uheIkoq4XSzMZOsrS++27d4BEiQlpFFG9aWeGxII2Pj0c/1Gg0oVAo+jfXrl375je/uXHjxuzs7HPnzn3729+uq6vbsmXLhNdZuXIlLu4koSf2YquPfHAwxqeoM610eSGHy/OWWSfEdnORcxvjR5hkab3vvnLVTAORX7xpZYXHgpSWljY6Ohp5ODIyotV+bsBz2bJlNTU19Oc777zzwQcf7OrqkjVEiJ9q00qngztcHtLqE6ImxUW1aYVk4HEMKTs7e2BgYHDw+nC5x+OZMJH0V7/61UsvvRR5ODIycsstt8gaIsRPzWlV8FIOUqVV2SNtECMeC1JeXt6cOXO2bt16/vz5AwcOHD582G63E0IqKir27NlDCJk3b96rr77a1NT017/+ta2t7eDBgwUFBayjViP/UBwfIkirIpdykCqtat7KBCJ47LLT6XQ1NTWbN2+22WwajWbNmjUlJSWEkP3794+OjpaUlHz961/v7e11Op3PP/98WlpaSUlJWVkZ66hhBkgr7bvb1dFfqaC+O6QVpBTm1fj4+IULF8bGxm50wNWrVz/55JNr167d6IDa2trkhAbXle3tjfckI62+i2NbWvrK9vayDmQGcZ3nWaa1trbW+nJX3CFC/Dh/+/DYZUelpKQsWLBgwgBptJtvvjkzM/Omm26SMyqIlkC/P9JKlxcyZmhN1cdYxyKZ2afVatYprDMTEsBvQQL+od8/Yc5CU9kKg+Jvm41dqcXQ2NnPOgpgDAUJgA1ak/J3dKEmEUKMei221wIUJEgcPklnyVlo8lXkoSZRpZYsh8vDOgpgCQUJgLH29bn5O7rc3mHWgTBmNWf4A0HUZjVDQYLEYcsASRj12vb1uZWtPpWP6hv12lJLVuUhVZ8ElUNBggQ1dvRjywCp0FuUlHfbbLzKLAa3dwiNRdVCQQLgAmoS5SwwqfwMqBkKEiToLe/wKkG2VBAFrUmKXPIudmUWAyGksQNTwNUIBQmAI3Q8SeXtpIbixRhJUicUJEiQ2ztEv8yCtOjS4IQQ1dYko15L7xpmHQjIDQUJEoTpuUlVajEQFdckZ6HJmJGu2v++aqEgQYIwxS6pjHotrUmqvVeUDqdhxp2qoCBBIho7+nETUrLRmmTM0KqzJtHhNIerF21x9UBBgkRgip08IkuDq7YmNRQvwdJK6oGCBIlwe4fQZScbNdckq1nnLDDl7+hiHQjIAQUJEuEPBNFlJyc116QyiwGT7lQCBQni1tjRjwnf8lPetn6xo8uiq/P/riooSBC3c4GgMQPNIwYi2/qxDoQNNf/fVQIFCeLm9g6vugsDSGyouSZhm13FQ0GCuLm9Q1ZMsWPn+laz9d2sA2EA2+wqGwoSxAcDSDwotRisZp065zg4C010LjjumVUeFCSID+5A4oHK75m1mnXY0lCRbmYdwNRCoVBzc7PH49Hr9UVFRdnZ2Tc68o033rh8+XJxcbGc4amZ2zvkLDAl9lykVUK0JlUe8jlcnobixQwjYZJWulUHvT/JWZjgBQm84bSFVF5eXlVVdenSpZaWlqKior6+vikPO3369ObNm//4xz/KHJ6azeYOJKRVWka91llg8geCbBsKrNJq1Gt9FXmEEHUOpykSjwXp9OnTbW1t27dvr6mp2bdvX2Zm5s6dOycfFgwGn3322YULF8ofoWrNZgAJaU0G5vvMMk8rHU7D1Dtl4LEg9fT0pKenW61WQkhqaqrNZuvp6Zl82EsvvfSlL33JbrfLHZ+K7er4uDTRgoS0JgnbfWaZp5Uu90eXF8KQkuh4LEiBQCAzM1OjuR5bVlZWIBCYcMzbb7/d2trqdDplj07VZjPhG2lNnsg+s/JPPOMkrWUWg68iT+W7vysAj5MaxsfHox9qNJpQKBT9m+Hh4R/+8Ifbtm3T6ab7cGxqajp+/DghZPfu3cmIU22i++vWrVtHf1i5cmWMT0dakyoyyN9QvGQ2d4nFm1mp0hr5u7NJa/v63F0d/abqY+3rc7HWYrQE3rBM8FiQ0tLSRkdHIw9HRka02s9dW9u3b//CF77w6aefNjc3nz179tKlS2+++eY3vvGNCa+zdu3a8vJyOSJWh10dH0emM0U+Nerq6mJ8OtKabLSdlL+jazYfx/FmVqq0SvL1gnbfrborI39HV9kKA2bfRSTwhmWCxy677OzsgYGBwcFB+tDj8UyYSDpv3ry5c+fu2bNnz549Z86cOXfunMvlYhGpusxygQakVQZ03p2cmzVwmFZ6lxLDiR6QuDB/hoaGvvrVr27cuPGjjz767W9/e8899zQ2NobD4RdeeOEXv/jFhINffPHFp556asrXqa2tTXqsqrGlpW9LS9/k38d+kpFW2Wxp6bO+3DXLF4nxPEuS1iTldEtLn7HqaPvZoWS8uKA4f/vw2ELS6XQ1NTXHjx+32WzPPvvsmjVrSkpKCCH79+/v7OycfHxkQBWSp7GzP+H5dRTSKhtnoUm2hYV4Tquz0IQFHcTC4xgSIcRut69evXpwcHDu3LmRLun33ntv8pHPP/+8vKGplNWcMftRYqRVNqUWg8PlqWz1yTCOwnNa6VwPzHQQBb9fQlNSUhYsWDBhgBSYcLg8Uq1fh7TKI3LDrDwTwXlOK53p4KvIoxWadTgwHX4LEvADK3yLiNYkh6sXSxhQdMU/rOnAMxQkmAGqkbjkn3THM9pUaihegqYSt1CQYAaVh3xsF5OG2SizGMpWGNS5S8WUrGZdpKmEHZV4g4IE02ns6LeasVu52EotBuYrgnOFNpXa1+c6XL04LVxBQYLpzGY1VeBEZPVVNAii0YUtCCGm6mMoS5xAQYIZzGZ1BuAEHUxyuHpZB8KXSFPJ7R12uDyY7MAcChLckMPlKbVksY4CpFFmMVjNGWgKTGbUa9s3LDdmaLGBBXMoSDA1fyDo9g5hfp2SOAtMTLaoEAJtKhFMdmAKBQmmVnnI5yzAYsmKErkziXUgnIrs9YfVhlhBQYKp4fYjRTLqtZgFPr0yiyEyLxxlSWYoSDAFh8uDe4+Uis4CR6/UNKInO2BlBzmhIMEU0DxSMPppi467GdHJDmUrDJjsIBsUJJgIzSPFs5p1mHEXo+jJDo0d/azDUTgUJPgct3cYzSM1cBaYGjv70RkVi8h64ZWHfLhdKalQkOBzKluxcp0q0FtlKw+hkRSH9vW5uF0pqVCQ4G/c3mH/0BiaRyphNWdgdkNcIpMdCG5XSg4UJPibylZfQ/ES1lGATDC7ITHRa7OiB09aKEhwHR2wxcp1qmI164wZ6fimnwC6Nit68KSFggTXVR7yOQuxNIPqoJGUMPTgSQ4FCa6zmjPQPFIh2khiHYXAojai7a1s9aEHbzZQkID4A8GUTW1YuU61nIWm/Ppu1lGIzWrW+SryCCHowZsNFCQgDpdnS4HJqNeyDgTYoC1j9DjNHu3B8w8FseBQYm5mHcDUQqFQc3Ozx+PR6/VFRUXZ2dkTDhgbG9u3b5/P51u4cOEjjzySmZnJJE5l8A+NOQuXy/CHkFZuOQtNla0+64ZELgOkNdr1/Xk7+h0uj9Wsw7hsXDhtIZWXl1dVVV26dKmlpaWoqKivry/6X0Oh0He/+92f//znIyMje/fufeihhwYGBliFKrr8+m7ZpnojrdyijaTEvtQjrZOVWQztG5YTLBkerzB/Tp06lZOTc+TIkXA4fPnyZbvd/sILL0QfcOTIkaVLl/7lL38Jh8MfffTRPffc88tf/nLy69TW1soTsLi2tPSV7e2dzSvEfpKRVs5taenb0tIXeRjjeZYkrQrOqe/imPXlrrK9vb6LY6xjCYe5P9U8tpB6enrS09OtVishJDU11Waz9fT0RB9w6623PvHEEwaDgRCSnp6u0Wjmzp3LJFSh+QPBLTLuwoe0cq7UYmjsjHvxUKR1erQHD7crxYjHMaRAIJCZmanRXC+WWVlZgUAg+oCVK1euXLkyEAi8/PLL7e3teXl5NpuNRaRic7g84e3ynTeklXNGvTaB+d9I64zovPBSi2FXR7+p+lj7+lxMILoRHltI4+Pj0Q81Gk0oFJrysNTUVIPB4PF4Tp48OfmApqYmm82mtqs/RrNcSN/2mdifgrTyr9SS9cVHq+M6vVKlNYErSiyR/dEdLo/8TSVRTi+PLaS0tLTR0dHIw5GREa32c18oxsbGCCHz589/7rnnCCGPPfbYzp07LRbLhNdZu3ZteXl58uMVksPlad+Qm/DT29ra6A91dXUxPgVp5Z/VnKH/Sn5bRQWJObNSpTVyRSlbmcVgNWfQplJD8RLZbkVP4A3LBI8tpOzs7IGBgcHBQfrQ4/FMmEhaXV1dXFwceWg2m8+fPy9riILLr+/eUmCSeV0GpJV/CfTaIa3xil6bFaNKE/BYkPLy8ubMmbN169bz588fOHDg8OHDdrudEFJRUbFnzx5CyH333XfmzJmf//zng4ODR48ebW5u/trXvsY6amHQ+x/lvz0CaRWC1ayL61MSaU2MUa+lKztgXvjnsJ7mN7VDhw7dd999OTk599xzz6ZNm65evRoOh5ctW/b000/TA2pqapYuXRo5YHR0dPKLcD7BkRXyzJH2s0NSvVpcJxlp5V/72SHry13heM7z7NOq5pz6Lo4Zq45GT7hPKs5PNacFKRwOj4+PX7hwYWzshpP3r1279vHHH1++fPlGB3B+6pmwvtwl7aUf70lGWjlHPx/DcZ7nWaZV5Tn1XRzb0tInT1ni/FTzOKmBSklJWbBgwTQH3HTTTQsXLpQtHsVgu5YJ0sq5xCZ/I62zEZkXnr+ji7B+h7LF4xgSJANd0ruheDHrQIB38Q4jgSSiR5VUuzArCpJa0HneuCMPZrTqrgys/M3KZxPwGNyrxAMUJFWgFzf234NYGDO0/qEx1lGoF11tiKiyqYSCpHxu73BjZ397QjsLgAqhGc0cHVXyVeSpbQU8FCTly6/vkm2DCQCQUPv63MbOfvXUJBQkhWOyKAOILoGJdpAMRr22fX0uIcRUfYx1LHJAQVI+Nc8iBRAd7b5rKF6ihjUdUJAUy+0dxjxvSAyGkXhjNevU0H2HgqRYDlcv5nlDYowZuGy4E+m+y6/vZh1LsqAgKVN+fXfZCgOGjgCUxKjXlloMVrNOqTPCUZAUiDbqMXQEoDzRM8KVV5NQkJQGdx0BqEH7+lzl3aWEgqQo/kAQdx3B7PmHlPbVW3nokJLbO6ykmoSCpCgOl6eheDGGjgDUgC4ypKSpdyhIykHn3pRZDKwDAQCZKKydhIKkEPRyxNARSEJ5o+UKRttJyqhJKEgKgYkMICGs9i2WSE1iHchsoSAJ77Od9zCRASSDFpJwaE0SfXkhFCTh0Z33MJEBJGQ1Z7AOAeIWGU8St6mEgiS2/Ppuq1mHagTSwopTgqLtJIerV9CahIIkMIfLQ7AiA0jN4fKswlccYRn12obiJQ5Xr4j9rihIomrs6PcHgpjIAJLzB4JGPfZDEpjVrCtbYaBfWMWCgiQkt3e48pAP1QiSwe0dQiew6EotBvLZ3SACuZl1AFMLhULNzc0ej0ev1xcVFWVnZ0844MqVK83Nze+///78+fMffvjhrKwsJnGykl/f1b4hl3UUcUNahRDvjAaklUOfDSZ5nKwjiQunLaTy8vKqqqpLly61tLQUFRX19fVF/2soFPre97733//936Ojo7/5zW++8Y1v+P1+RpHKzR8ImqqPCTqtDmnlX2WrL95LC2nlk1GvLbVkCbb3eZg/p06dysnJOXLkSDgcvnz5st1uf+GFF6IPOHTo0D333OP1esPh8Ojo6D/+4z/W1NRMfp3a2lp5ApaT9eWuhnf/wjqKv4n9JCOtQjBWHfVdHAvHfJ4lSStymjwTPjE4P9U8tpB6enrS09OtVishJDU11Waz9fT0RB9w8eLFFStWLFq0iBCSnp5uMBiGhoaYhCozOslb0NXqkFYh+APBuOZ8I62cayheXHlImJEkHgtSIBDIzMzUaK7HlpWVFQgEog8oLi7evXs3/bmzs/PkyZMrV66c/DpNTU02m81msyU7YHlwNcnb9pnYn4K08q+xo39x+MO4Tq9UaU3gioJYGPXashWGr/zrfwlxenmc1DA+Ph79UKPRhEKhyYeFw+G9e/f++Mc/fuCBBx566KHJB6xdu7a8vDxZUcqrstXH1STvtrY2+kNdXV2MT0Fa+ber4+P6J79pNZeSmDMrVVojVxRIrtRiaOz8h57/fYbE84ZlgseClJaWNjo6Gnk4MjKi1U7sQ7hw4cKmTZs8Hs8Pf/jD4uLilJQUeWOUFd0E1leRxzqQWUFa+ef2DrWb4/vSg7Tyz6jXWs0ZjR39/Pf281iQsrOzBwYGBgcH58+fTwjxeDwTJpKOjY1973vfW7hw4e9+97sFCxYwClM+Dlev6NWIIK3cq2z1bSmIu0MYaRWCs8CUv6OL/4LE4xhSXl7enDlztm7dev78+QMHDhw+fNhutxNCKioq9uzZQwj55S9/OTAw8Pzzz4+MjPh8Pp/Pd/HiRdZRJ4XbO2yqPqaMlbyRVs41dvaXxv+BhbQKwajXGjPS+V/gjscWkk6nq6mp2bx5s81m02g0a9asKSkpIYTs379/dHS0pKTkxIkTo6OjjzzySOQp3//+9ysqKtiFnBT+QJDeACviLUeTIa08a+zot5ozElhTFWkVhdWse+vs0G2sw5gejwWJEGK321evXj04ODh37txIl/R7771Hf6itrWUXmnzEvQH2RpBWbu3q+DjhCZxIqxBW3ZVR2er7Fuswpsdjlx2VkpKyYMGCyQOkauAPBPPruxVWjSg1p5VbtCdnNhcb0so/q1nH/0bA/BYkNXO4PKWWLOVVI+BTZauPk/vbIKmMGbwv4o6CxJ38+u5SSxb/82FAGWbfPAKQCgoSX/Lru416LaoRyKayFfuYqAX/GwGjIHEkv76bENJQvJh1IKAWjR39rEMA+BtOZ9mpEK1G+K4Kcqo85FPGXW6gDGghcQHVCORH7z3C6BHwAy0k9ugy3qhGICd/IOhweRSwJBUoCVpIjDlcHq6W8QaVcLg8WwpM/I9yg4TcXt53okJBYom3TSVAJehUb9x7pDb+QJB1CDNAlx1LCthUAkSkjPXjIV78N4jRQmKjsaPfVH0MHwogP4fLU7YCN7qpjsPlcca/vYjMUJAYaOzorzzkQzUC+bm9w27vEDrrVMjtHbKaM1hHMQMUJLmhGgFDDlcvbjxSJ38giC47+BxUI2Aov767bIUBNx6pkMPlEWIJGBQk+aAaAUOYWadmjR39QqyQiVl2MkE1Arby67tw+amTKM0jghaSPFCNgC263yP/QwggOX8gKErziKAgyQDVCNiiKyVi6EidBGoeERSkZEM1ArboBhNYDUSdaPZFaR4RjCEllds7jGoEbGEFVTUTbnsRtJCSpbGjHwu0AEP+QDBlUxuGjlRLxFn+KEhJ0djRv6vjY1QjYIgOHoj1eQRSqWz1EQFn+XPaZRcKhZqbmz0ej16vLyoqys7OnvKw3t7eI0eObNy4UebwpkerEXrtJxM6rWKhExnkGTxAWnnj9g4LunAzpy2k8vLyqqqqS5cutbS0FBUV9fX1TT5mcHBw69atra2t8oc3DVSjaYibVrHQb8eyXYRIK1f8gWB+fZdYQ0cRPLaQTp8+3dbWtmPHDpvNduXKlQcffHDnzp3V1dXRx6xdu/bMmTOhUOjuu+9mFedkla0+t3cY1WhK4qZVLDJ/O0ZaueIPBE3Vx9o35AraVctjQerp6UlPT7darYSQ1NRUm8329ttvTzhm27ZtV65c2b9/f2dnJ4MQp4K9X6cnaFrF4vYOO1y97etzZfuLSCtXHC6PuNWI8FmQAoFAZmamRnO9OzErKysQCEw4ZunSpYSQEydOTHOJNzU1HT9+nBCye/fupAV7ndqq0bp16+gPK1eujPEpIqZVOPn1XbOcVhdvZqVKa+TvIq0Jy6/vLrVkTVmNEnjDMsFjQRofH49+qNFoQqFQAq+zdu3a8vJyiYKajtqqEYn61Kirq4vxKcKlVSxS9dXEm1mp0oo6NEv59d3TfAQl8IZlgseClJaWNjo6Gnk4MjKi1fJ7IwWdzqSqapQYsdIqHFZ9NUgrD2jbiHUUEuBxll12dvbAwMDg4CB96PF4bjSRlLn8+m6jXotqFAuB0iqcafpqkg1pZcsfCNLsC7Q+0DR4LEh5eXlz5szZunXr+fPnDxw4cPjwYbvdTgipqKjYs2cP6+j+hlYjgRYuZEuUtAqHXoesPo+QVoZoP61iqhHhs8tOp9PV1NRs3rzZZrNpNJo1a9aUlJQQQvbv3z86Okp/jkhJSWESZH59t9WsE+5GaIaESKtwaI8xw29FSCsrbu8wncMi7py6KYR5NT4+fuHChbGxsYRfoba2VsJ4ollf7mp49y9JenGxxHuSeU6rcKwvd1lf7krSi8d1nmeZVuQ0Xu1nh4xVR9vPDsX7RM5PNY8tJColJWXBggWso5jIHwg6XB4ltZFlxmdaRcTVbBqkVU6Vrb7Gzv729QpcNpffgsQhWo2chSZFtZFBQFxVI5AN/QgihIi4Tl0seJzUwCc6fohqBMzRjyRUI7XxB4L5O7qsZp2CU48WUkxEXyEKFEOFd2EDUeoUhklQkGZG1wcLb7exDgTUDtVIneigkRo+gtBlNwNajQRdyx2UBNVIheh9r0S5g0YToIU0nUg1UnYzGfiHaqRCKvz8QUG6ocaO/spDPpV8MQGeoRqpjT8QrDzk8weCavv8QZfd1Cpbfbs6Plbb1QAcQjVSG7d3OH9HlzFDjYtkooU0BXwEACdwv5Ha0PkLquqmi4YW0kSoRsAJrCWvKtHzF9RZjQhaSBPgIwA4Mf1+a6AwtGGEMQK0kP4G20kAJ+ha8qyjADnQhpF/SHXzF6aEFtJ12E4COKGk/dZgeiofMZoMBQkLeAMvcCmqx2cL02WgYRRN7QUJi9QBJ3ApqoQ/ENzV0Y+G0ZRUPYbk9g7jIwB4gGqkEvQzh6h7Kt001NtCosty4CMAmFPJQs4qR/tj/UNjSPQ0VFqQaDVC7y0wh7Xk1aCy1bflkG9LgclZiKn801FjQcIidcAJrCWveJE9XvGdIxaqK0iVrT63dxjVCJjDFyPFw6zueKlrUoPD5XF7h3EDPDCH1XuVze0dTtnURjB5IU4qaiFhnUrgBNZLVDBMXpgNUQtSKBRqbm72eDx6vb6oqCg7O3v647EskBDiTauIVLheohrSStE+urIVBkxeSIyoXXbl5eVVVVWXLl1qaWkpKirq6+u70ZF0qSirWYdqxL/Y0yoieimq8IuRstNKRd9ghBXIEiZkQTp9+nRbW9v27dtramr27duXmZm5c+fOKY+kzef2DcuFuES+9KUvsQ6BpdjTKpy6urrIpai2aqTstJLPvmfQ20iE+JzhmZAFqaenJz093Wq1EkJSU1NtNltPT8/kw/yBMVP1MVwioogxrSJS86Wo4LQSQipbffk7uqxmHeanSELIMaRAIJCZmanRXK+mWVlZgUBg8mHbP733W6Gjp37Xe0re8GaDfudSpxjTevz4cXnjkoCIl6JUYkyriFf+M6cX3tLZ+uMV18gHpO4D1tEogpAFaXx8PPqhRqMJhUKTD2vfkGs1i3QzWnl5OesQWIoxrbt375YrIsks8w6LdSlKKJa0CnrlL/MOYx6dtITssktLSxsdHY08HBkZ0Wq1kw/DtSKWGNMqIjVfikgrxE7IgpSdnT0wMDA4OEgfejweBU8kVQ+kVZGQVoidkAUpLy9vzpw5W7duPX/+/IEDBw4fPmy321kHBbOFtCoS0gqxSwmHw6xjSMTvf//7zZs3Dw8PazSaNWvW/OhHP7r5ZiHHwyAa0qpISCvESNSCRAgJh8ODg4Pl2sgrAAADgElEQVRz585VTJc0EKRVoZBWiIXABQkAAJREyDEkAABQHgX25AqxkuOMQXZ1dUXf0G6z2e688055Y5xZb2/vkSNHNm7cqKo/HTshLsUpsTq9SGtS8X96Fdhlt379+nfeecdut585c+bPf/5zU1PTokWLWAc10YxB/uAHPzh58qTJdH2xmccff9xisbCI9IYGBwfLy8tHRkYOHDignj8dFyEuxclYnV6kNanEOL1hZTl16lROTs6RI0fC4fDly5ftdvsLL7zAOqiJYglyzZo1+/btYxFdTB555JHFixfn5OSsWbNGPX86LkJcipOxOr1Ia1KJcnqV1mU3eSXHt99+m3VQE80Y5NWrV/v6+nQ63ZtvvpmRkbFixYpbbrmFTaw3sG3btitXruzfv7+zs1M9fzouQlyKk7E6vUhrUolyepU2qSHGlRzZmjFIr9cbCoWefvrpn/zkJ0888cRDDz0UudGdE0uXLl2+fPkdd9yhqj8dFyEuxclYnV6kNalEOb1KayHFuEAnWzMGee3atW9+85sbN27Mzs4+d+7ct7/97bq6ui1btsgaJR/6+voi3+nuvvvu5cuF2YhTiEuRFaQVpqS0giTESo4zBrls2bKamhr685133vnggw92dXXJGiI3/vSnP7322mv05wceeECgTy4hLkVWkFaYktIKUmQlx/nz5xNeV3KcMchf/epX586de/bZZ+nDkZER3saQZPPAAw888MADrKNIhBCXIitIK0xJaWNIQqzkeKMgKyoq9uzZQwiZN2/eq6++2tTU9Ne//rWtre3gwYMFBQWso4b4CHEpQryQ1qRSWgtJp9PV1NRs3rzZZrPRlRxLSkpYBzXRjYLcv3//6OhoSUnJ17/+9d7eXqfT+fzzz6elpZWUlJSVlbGOemopKSkq/NOxEOJSnAar04u0JhXnp1eBN8YSQVZynDHIa9euBQKB22677aabbpI5NpCKEJcixAtpTRJlFiQAABCO0saQAABAUChIAADABRQkAADgAgoSAABwAQUJAAC4gIIEAABcQEECAAAuoCABAAAXUJAAAIALKEgAAMAFFCQAAOACChIAAHABBQkAALiAggQAAFxAQQIAAC6gIAEAABdQkAAAgAsoSAAAwAUUJAAA4AIKEgAAcAEFCQAAuICCBAAAXEBBAgAALqAgAQAAF1CQAACACyhIAADAhf8f8lOjQg0B9LUAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "clear all; clc\n", + "\n", + "L = 1.0;\n", + "x = linspace(0, L);\n", + "subplot(1,3,1);\n", + "y = sin(pi * x / L);\n", + "plot(y, x); title('n = 1')\n", + "subplot(1,3,2);\n", + "y = sin(2 * pi * x / L);\n", + "plot(y, x); title('n = 2')\n", + "subplot(1,3,3);\n", + "y = sin(3* pi * x / L);\n", + "plot(y, x); title('n = 3')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Here we see different modes of how the beam will buckle. How do we know when this happens?\n", + "\n", + "Recall that the eigenvalue is connected to the physical properties of the beam:\n", + "\\begin{gather}\n", + "\\lambda^2 = \\frac{P}{EI} \\rightarrow \\lambda = \\sqrt{\\frac{P}{EI} = \\frac{n \\pi}{L} \\\\\n", + "P = \\frac{EI}{L} n^2 \\pi^2\n", + "\\end{gather}\n", + "This means that when the combination of load force and beam properties match certain values, the beam will deflect—and buckle—in one of the modes corresponding to the associated eigenfunction.\n", + "\n", + "In particular, the first mode ($n=1$) is interesting, because this is the first one that will be encountered if a load starts at zero and increases. This is the **Euler critical load** of buckling, $P_{cr}$:\n", + "\\begin{gather}\n", + "\\lambda_1 = \\frac{\\pi}{L} \\rightarrow \\lambda_1^2 = \\frac{P}{EI} = \\frac{\\pi^2}{L^2} \\\\\n", + "P_{cr} = \\frac{\\pi^2 E I}{L^2}\n", + "\\end{gather}" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example: beam buckling with different boundary conditions\n", + "\n", + "Let's consider a slightly different case, where at $x=0$ the beam is supported such that $y'(0) = 0$. How does the beam buckle in this case?\n", + "\n", + "The governing equation and general solution are the same:\n", + "\\begin{align}\n", + "y'' + \\lambda^2 y &= 0 \\\\\n", + "y(x) &= A \\cos (\\lambda x) + B \\sin (\\lambda x)\n", + "\\end{align}\n", + "but our boundary conditions are now different:\n", + "\\begin{align}\n", + "y'(0) = 0 = -\\lambda A \\sin(0) + \\lambda B\\cos(0) \\\\\n", + "\\rightarrow B &= 0 \\\\\n", + "y &= A \\cos (\\lambda x) \\\\\n", + "y(L) &= 0 = A \\cos (\\lambda L) \\\\\n", + "A \\neq 0 \\rightarrow \\cos(\\lambda L) &= 0 \\\\\n", + "\\text{so} \\quad \\lambda L &= \\frac{(2n-1) \\pi}{2} \\quad n = 1,2,3,\\ldots, \\infty \\\\\n", + "\\lambda &= \\frac{(2n-1) \\pi}{2 L} \\quad n = 1,2,3,\\ldots, \\infty\n", + "\\end{align}\n", + "\n", + "Then, the critical buckling load, again corresponding to $n=1$, is\n", + "\\begin{equation}\n", + "P_{cr} = \\frac{\\pi^2 EI}{4 L^2}\n", + "\\end{equation}" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Matlab", + "language": "matlab", + "name": "matlab" + }, + "language_info": { + "codemirror_mode": "octave", + "file_extension": ".m", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://metakernel.readthedocs.io/en/latest/source/README.html" + } + ], + "mimetype": "text/x-octave", + "name": "matlab", + "version": "0.16.7" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +}