diff --git a/_build/quizzes/quiz3-BVPs.html b/_build/quizzes/quiz3-BVPs.html new file mode 100644 index 0000000..9b2f421 --- /dev/null +++ b/_build/quizzes/quiz3-BVPs.html @@ -0,0 +1,95 @@ +--- +redirect_from: + - "/quizzes/quiz3-bvps" +title: |- + Sample Quiz 3 problems: BVPs +pagenum: 17 +prev_page: + url: /quizzes/quiz2-IVPs.html +next_page: + url: /contributing.html +suffix: .md +search: t r delta equation ri frac infty n lambda begin end ti m b y x sin left right tn k h annular fin dr align eigenvalue pi finite difference temperature radius dt solution quad ldots problem outer described where heat transfer figure center ode location differences recursion c boundary condition replace given prime eigenfunction principal gather cos text therefore associated sample quiz problems bvps method distribution inner d rm radial distance centerline independent variable constant depends coefficient thermal conductivity thickness annulus assuming choose spatial step size img src images png alt style width px figcaptionfigure figcaption representation applies using + +comment: "***PROGRAMMATICALLY GENERATED, DO NOT EDIT. SEE ORIGINAL FILES IN /content***" +--- + +
+
Sample Quiz 3 problems: BVPs
+
+
+ +
+
+

Problem 1: Finite difference method

The temperature distribution $T(r)$ in an annular fin of inner radius $r_1$ and outer radius $r_2$ is described by the equation +\begin{equation} +r \frac{d^2 T}{dr^2} + \frac{dT}{dr} - rm^2 (T - T_{\infty}) = 0 \;, +\end{equation} +where $r$ is the radial distance from the centerline (the independent +variable) and $m^2$ is a constant that depends on the heat transfer coefficient, thermal conductivity, and thickness of the annulus. Assuming we choose a spatial step size $\Delta r$,

+
+
+ Annular fin +
Figure: Annular fin
+
+

a.) Write the finite-difference representation of the ODE (that applies at a location $r_i$), using central differences.

+

b.) Based on the last part, write the recursion formula.

+

c.) The boundary condition at the outer radius $r = r_2$ is described by convection heat transfer: +\begin{equation} +-k \left. \frac{dT}{dr} \right|_{r=r_2} = h \left[ T(r=r_2) - T_{\infty} \right] \;. +\end{equation} +Write the boundary condition at $r = r_2$ in recursion form (i.e., the equation you would implement into your system of equations to solve for temperature).

+

Solution

a.) Replace the derivatives in the given ODE with finite differences, and replace any locations with the $i$ location: +\begin{equation} +r_i \frac{T_{i-1} - 2T_i + T_{i+1}}{\Delta r^2} + \frac{T_{i+1} - T_{i-1}}{\Delta r} - r_i m^2 (T_i - T_{\infty}) = 0 +\end{equation} +or +\begin{equation} +r_i (T_{i-1} - 2T_i + T_{i+1}) + \frac{\Delta r}{2} (T_{i+1} - T_{i-1}) - r_i m^2 \Delta r^2 (T_i - T_{\infty}) = 0 +\end{equation}

+

b.) Rearrange and combine terms: +\begin{align} +r_i (T_{i-1} - 2T_i + T_{i+1}) + \frac{\Delta r}{2} (T_{i+1} - T_{i-1}) - r_i m^2 \Delta r^2 (T_i - T_{\infty}) &= 0 \\ +r_i (T_{i-1} - 2T_i + T_{i+1}) + \frac{\Delta r}{2} (T_{i+1} - T_{i-1}) - r_i m^2 \Delta r^2 T_i &= -r_i m^2 \Delta r^2 T_{\infty} \\ +\left(r_i - \frac{\Delta r}{2}\right) T_{i-1} + \left( -2 r_i - r_i m^2 \Delta r^2 \right) T_i + \left( r_i + \frac{\Delta r}{2} \right) T_{i+1} &= -r_i m^2 \Delta r^2 T_{\infty} +\end{align}

+

c.) We can use a backward difference to approximate the $dT/dr$ term. $T_n$ represents the temperature at node $n$ where $r_n = r_2$: +\begin{align} +-k \frac{T_n - T_{n-1}}{\Delta r} &= h (T_n - T_{\infty}) \\ +-k (T_n - T_{n-1}) &= h \Delta r (T_n - T_{\infty}) \\ +k T_{n-1} - (k + h\Delta r) T_n &= -h \Delta r T_{\infty} +\end{align}

+

Problem 2: eigenvalue

Given the equation $y^{\prime\prime} + 9 \lambda^2 y = 0$ with $y(0) = 0$ and $y(2) = 0$,

+

a.) Find the expression that gives all eigenvalues ($\lambda$). What is the eigenfunction?

+

b.) Calculate the principal eigenvalue.

+

Solution

a.) +\begin{gather} +y(x) = A \sin (3 \lambda x) + B \cos (3 \lambda x) \\ +\text{Apply BCs: } y(x=0) = 0 = A \sin(0) + B \cos(0) = B \\ +\therefore B = 0 \\ +y(x) = A \sin (3 \lambda x) \\ +y(x=2) = 0 = A \sin (3 \lambda 2) \\ +A \neq 0 \text{ so } \sin(3 \lambda 2) = \sin(6 \lambda) = 0 \therefore 6 \lambda = n \pi \quad n=1,2,3,\ldots \\ +\lambda = \frac{n \pi}{6} \quad n=1,2,3,\ldots,\infty +\end{gather}

+

The eigenfunction is then the solution function associated with an eigenvalue: +\begin{equation} +y_n = A_n \sin \left( \frac{n \pi x}{2} \right) \quad n = 1, 2, 3, \ldots, \infty +\end{equation}

+

b.) The principal eigenvalue is just that associated with $n = 1$: +\begin{equation} +\lambda_p = \lambda_1 = \frac{\pi}{6} +\end{equation}

+

+
+ +
+
+
+
+ + + + +
+ \ No newline at end of file diff --git a/_data/toc.yml b/_data/toc.yml index c7a90bd..df49a6c 100644 --- a/_data/toc.yml +++ b/_data/toc.yml @@ -53,6 +53,8 @@ - header: Sample Quizzes - url: /quizzes/quiz2-IVPs not_numbered: true +- url: /quizzes/quiz3-BVPs + not_numbered: true - divider: true