-
Notifications
You must be signed in to change notification settings - Fork 3
/
pix2pixRGB.py
422 lines (337 loc) · 17.7 KB
/
pix2pixRGB.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
from __future__ import absolute_import, division, print_function, unicode_literals
import os, datetime, time, glob, zipfile, shutil
from matplotlib import pyplot as plt
import IPython as ipy
from PIL import Image
import tensorflow as tf
import numpy as np
version_number = 0.1
print('pix2pix r{} has loaded.'.format(version_number))
class ImgUtil():
# converts a PIL image to a normalized tensor of dimension [1,sz,sz,3]
@staticmethod
def imgpil_to_imgten(imgpil):
imgten = tf.keras.preprocessing.image.img_to_array(imgpil)
imgten = tf.cast(imgten, tf.float32)
imgten = tf.expand_dims(imgten, 0)
imgten = ImgUtil.normalize_imgten(imgten)
return imgten
# converts a normalized tensor of dimension [1,sz,sz,3] to a PIL image
@staticmethod
def imgten_to_imgpil(imgten):
imgarr = imgten[0].numpy() # TODO: what if we are passed more than one image?
imgarr = ((imgarr * 0.5) + 0.5)*255
imgpil = Image.fromarray(np.uint8(imgarr))
return imgpil
# loads a paired image file and returns two PIL image_tensor
@staticmethod
def load_img_pair_as_pil(pth_img):
img_full = Image.open(pth_img)
w,h = img_full.size
img_left, img_right = img_full.crop((0,0,w/2,h)), img_full.crop((w/2,0,w,h))
return img_right, img_left # matching expectations set by function below
@staticmethod
def load_img_pair_as_ten(image_file):
#tf.print(image_file)
image = tf.io.read_file(image_file)
#image = tf.image.decode_jpeg(image)
image = tf.image.decode_png(image, channels=3)
w = tf.shape(image)[1]
w = w // 2
img_left = image[:, :w, :]
img_right = image[:, w:, :]
img_right = tf.cast(img_right, tf.float32)
img_left = tf.cast(img_left, tf.float32)
return img_right, img_left
@staticmethod
def resize_imgten(imgten, sz):
return tf.image.resize(imgten, [sz, sz], method=tf.image.ResizeMethod.NEAREST_NEIGHBOR)
@staticmethod
def random_crop_pair(input_image, real_image):
stacked_image = tf.stack([input_image, real_image], axis=0)
cropped_image = tf.image.random_crop(stacked_image, size=[2, 256, 256, 3])
return cropped_image[0], cropped_image[1]
# normalizing the images to [-1, 1]
@staticmethod
def normalize_imgten(img): return (img / 127.5) - 1
@staticmethod
def find_corrupt_images(pth, channels=3):
bad_ones = []
for fname in os.listdir(pth):
try:
with tf.io.gfile.GFile(os.path.join(pth, fname), 'rb') as fid: image_data = fid.read()
image_tensor = tf.image.decode_png(image_data,channels=channels,name=None)
except:
bad_ones.append(fname)
return(bad_ones)
@staticmethod
def plot_imgtens(img_a, img_b, img_c=None, pth_save=None):
# TODO: ensure tensors are the same shape
cnt,w,h = len(img_a), img_a.shape[1], img_a.shape[2]
dpi = 100
if img_c is not None:
plt.figure(figsize=(w/dpi*3*1.5,h/dpi*1.5), dpi=dpi)
display_list = [img_a[0], img_b[0], img_c[0]]
title = ['given', 'target', 'generated']
else:
plt.figure(figsize=(w/dpi*2*1.5,h/dpi*1.5), dpi=dpi)
display_list = [img_a[0], img_b[0]]
title = None
n=1
for j in range(cnt):
for i in range(len(display_list)):
plt.subplot(cnt, len(display_list), n) # nrows, ncols, index
if title is not None: plt.title(title[i])
# getting the pixel values between [0, 1] to plot it.
plt.imshow(display_list[i] * 0.5 + 0.5)
plt.axis('off')
n+=1
if pth_save is not None: plt.savefig(pth_save) # save before showing
plt.show()
class Pix2Pix256RGB():
IMG_SIZE = 256
def __init__(self):
print("...initializing Pix2Pix256RGB model.")
#self.img_size = 256
self.output_channels = 3
self.lmbda = 100
self.generator, self.discriminator = False, False
self.loss_object, self.generator_optimizer, self.discriminator_optimizer = False, False, False
self.checkpoint = False
@staticmethod
def construct_training_model():
print("Constructing a model for training.")
mdl = Pix2Pix256RGB()
mdl.generator = mdl._construct_generator()
mdl.discriminator = mdl._construct_discriminator()
print("...initalizing optimizers.")
mdl.loss_object = tf.keras.losses.BinaryCrossentropy(from_logits=True)
mdl.generator_optimizer = tf.keras.optimizers.Adam(2e-4, beta_1=0.5)
mdl.discriminator_optimizer = tf.keras.optimizers.Adam(2e-4, beta_1=0.5)
mdl.checkpoint = mdl._construct_checkpoint_saver()
print("Training model constructed!")
return mdl
@staticmethod
def construct_inference_model():
print("Constructing a model for inference.")
mdl = Pix2Pix256RGB()
mdl.generator = mdl._construct_generator()
return mdl
@staticmethod
def restore_from_checkpoint(pth_checkpoint):
mdl = Pix2Pix256RGB.construct_training_model()
print("...restoring model from checkpoints at '{}".format(pth_checkpoint))
latest = tf.train.latest_checkpoint(pth_checkpoint)
print("...restoring checkpoint '{}'".format(os.path.basename(latest)))
mdl.checkpoint.restore(latest)
print("Model restored from checkpoint!")
return mdl
@staticmethod
def restore_from_hdf5(pth_h5):
mdl = Pix2Pix256RGB.construct_inference_model()
print("...restoring model from hdf5 at '{}'".format(pth_h5))
mdl.generator = tf.keras.models.load_model(pth_h5)
print("Model restored from HDF5!")
return mdl
@staticmethod
def define_input_pipeline(pth_train_locl, dinfo, img_ext, buffer_size=400, batch_size=1):
all_dataset = tf.data.Dataset.list_files(os.path.join(pth_train_locl ,'*.{}'.format(img_ext)))
sze = len(list(all_dataset))
print("{} images found in the complete dataset".format(sze))
train_size = int(0.80 * sze)
test_size = int(0.18 * sze)
val_size = int(0.02 * sze)
print("{} train / {} test / {} validation".format(train_size,test_size,val_size))
all_dataset = all_dataset.shuffle(buffer_size)
val_dataset = all_dataset.take(val_size)
all_dataset = all_dataset.skip(val_size)
test_dataset = all_dataset.take(test_size)
train_dataset = all_dataset.skip(test_size)
@tf.function()
def random_jitter(input_image, real_image, do_mirror=False):
input_image = ImgUtil.resize_imgten(input_image, 286) # resizing to 286 x 286 x 3
real_image = ImgUtil.resize_imgten(real_image, 286) # resizing to 286 x 286 x 3
input_image, real_image = ImgUtil.random_crop_pair(input_image, real_image) # randomly cropping to 256 x 256 x 3
# random mirroring
if do_mirror:
if tf.random.uniform(()) > 0.5:
input_image = tf.image.flip_left_right(input_image)
real_image = tf.image.flip_left_right(real_image)
return input_image, real_image
def load_image_train(image_file_ten):
input_image, real_image = ImgUtil.load_img_pair_as_ten(image_file_ten)
input_image, real_image = random_jitter(input_image, real_image)
input_image = ImgUtil.normalize_imgten(input_image)
real_image = ImgUtil.normalize_imgten(real_image)
return input_image, real_image
def load_image_test(image_file_ten):
input_image, real_image = ImgUtil.load_img_pair_as_ten(image_file_ten)
input_image = ImgUtil.resize_imgten(input_image, Pix2Pix256RGB.IMG_SIZE)
real_image = ImgUtil.resize_imgten(real_image, Pix2Pix256RGB.IMG_SIZE)
input_image = ImgUtil.normalize_imgten(input_image)
real_image = ImgUtil.normalize_imgten(real_image)
return input_image, real_image
# validation set
# first copy images to checkpoint folder
'''
DirUtil.purge_dir(dinfo.pth_vald)
for next_element in val_dataset:
pth_src = next_element.numpy().decode()
shutil.copyfile(pth_src, os.path.join(dinfo.pth_vald, os.path.basename(pth_src) ))
val_dataset = val_dataset.map(load_image_test)
val_dataset = val_dataset.batch(batch_size)
'''
# test set
test_dataset = test_dataset.map(load_image_test)
test_dataset = test_dataset.batch(batch_size)
# train set
train_dataset = train_dataset.map(load_image_train, num_parallel_calls=tf.data.experimental.AUTOTUNE)
train_dataset = train_dataset.shuffle(buffer_size)
train_dataset = train_dataset.batch(batch_size)
print("{} images copied to results folder to be used for validation".format(len(list(val_dataset))))
print("{} images set aside and have been processed for testing".format(len(list(test_dataset))))
print("remaining {} images have been processed for training".format(len(list(train_dataset))))
return val_dataset, test_dataset, train_dataset
def _downsample(self, filters, size, apply_batchnorm=True):
initializer = tf.random_normal_initializer(0., 0.02)
result = tf.keras.Sequential()
result.add(
tf.keras.layers.Conv2D(filters, size, strides=2, padding='same',
kernel_initializer=initializer, use_bias=False))
if apply_batchnorm:
result.add(tf.keras.layers.BatchNormalization())
result.add(tf.keras.layers.LeakyReLU())
return result
def _upsample(self, filters, size, apply_dropout=False):
initializer = tf.random_normal_initializer(0., 0.02)
result = tf.keras.Sequential()
result.add(
tf.keras.layers.Conv2DTranspose(filters, size, strides=2,
padding='same',
kernel_initializer=initializer,
use_bias=False))
result.add(tf.keras.layers.BatchNormalization())
if apply_dropout: result.add(tf.keras.layers.Dropout(0.5))
result.add(tf.keras.layers.ReLU())
return result
def _construct_generator(self):
print("...initalizing generator")
inputs = tf.keras.layers.Input(shape=[256,256,3])
down_stack = [
self._downsample(64, 4, apply_batchnorm=False), # (bs, 128, 128, 64)
self._downsample(128, 4), # (bs, 64, 64, 128)
self._downsample(256, 4), # (bs, 32, 32, 256)
self._downsample(512, 4), # (bs, 16, 16, 512)
self._downsample(512, 4), # (bs, 8, 8, 512)
self._downsample(512, 4), # (bs, 4, 4, 512)
self._downsample(512, 4), # (bs, 2, 2, 512)
self._downsample(512, 4), # (bs, 1, 1, 512)
]
up_stack = [
self._upsample(512, 4, apply_dropout=True), # (bs, 2, 2, 1024)
self._upsample(512, 4, apply_dropout=True), # (bs, 4, 4, 1024)
self._upsample(512, 4, apply_dropout=True), # (bs, 8, 8, 1024)
self._upsample(512, 4), # (bs, 16, 16, 1024)
self._upsample(256, 4), # (bs, 32, 32, 512)
self._upsample(128, 4), # (bs, 64, 64, 256)
self._upsample(64, 4), # (bs, 128, 128, 128)
]
initializer = tf.random_normal_initializer(0., 0.02)
last = tf.keras.layers.Conv2DTranspose(self.output_channels, 4,
strides=2,
padding='same',
kernel_initializer=initializer,
activation='tanh') # (bs, 256, 256, 3)
x = inputs
# Downsampling through the model
skips = []
for down in down_stack:
x = down(x)
skips.append(x)
skips = reversed(skips[:-1])
# Upsampling and establishing the skip connections
for up, skip in zip(up_stack, skips):
x = up(x)
x = tf.keras.layers.Concatenate()([x, skip])
x = last(x)
return tf.keras.Model(inputs=inputs, outputs=x)
def _construct_discriminator(self):
print("...initalizing discriminator")
initializer = tf.random_normal_initializer(0., 0.02)
inp = tf.keras.layers.Input(shape=[256, 256, 3], name='input_image')
tar = tf.keras.layers.Input(shape=[256, 256, 3], name='target_image')
x = tf.keras.layers.concatenate([inp, tar]) # (bs, 256, 256, channels*2)
down1 = self._downsample(64, 4, False)(x) # (bs, 128, 128, 64)
down2 = self._downsample(128, 4)(down1) # (bs, 64, 64, 128)
down3 = self._downsample(256, 4)(down2) # (bs, 32, 32, 256)
zero_pad1 = tf.keras.layers.ZeroPadding2D()(down3) # (bs, 34, 34, 256)
conv = tf.keras.layers.Conv2D(512, 4, strides=1,
kernel_initializer=initializer,
use_bias=False)(zero_pad1) # (bs, 31, 31, 512)
batchnorm1 = tf.keras.layers.BatchNormalization()(conv)
leaky_relu = tf.keras.layers.LeakyReLU()(batchnorm1)
zero_pad2 = tf.keras.layers.ZeroPadding2D()(leaky_relu) # (bs, 33, 33, 512)
last = tf.keras.layers.Conv2D(1, 4, strides=1,
kernel_initializer=initializer)(zero_pad2) # (bs, 30, 30, 1)
return tf.keras.Model(inputs=[inp, tar], outputs=last)
def _generator_loss(self, disc_generated_output, gen_output, target):
gan_loss = self.loss_object(tf.ones_like(disc_generated_output), disc_generated_output)
l1_loss = tf.reduce_mean(tf.abs(target - gen_output)) # mean absolute error
total_gen_loss = gan_loss + (self.lmbda * l1_loss)
return total_gen_loss, gan_loss, l1_loss
def _discriminator_loss(self, disc_real_output, disc_generated_output):
real_loss = self.loss_object(tf.ones_like(disc_real_output), disc_real_output)
generated_loss = self.loss_object(tf.zeros_like(disc_generated_output), disc_generated_output)
total_disc_loss = real_loss + generated_loss
return total_disc_loss
def _construct_checkpoint_saver(self):
print("...initalizing checkpoint saver")
check_savr = tf.train.Checkpoint(
generator_optimizer=self.generator_optimizer,
discriminator_optimizer=self.discriminator_optimizer,
generator=self.generator,
discriminator=self.discriminator
)
return check_savr
def fit(self, train_ds, epochs, epochs_per_save, test_ds, dinfo):
pth_check, pth_rslts = dinfo.pth_chck , dinfo.pth_prog
checkpoint_prefix = os.path.join(pth_check, "ckpt")
log_dir = os.path.join(pth_check, "logs")
print("logs will be saved to\n{}".format(log_dir))
summary_writer = tf.summary.create_file_writer( os.path.join(log_dir, "fit", datetime.datetime.now().strftime("%Y%m%d-%H%M%S") ) )
@tf.function
def train_step(input_image, target, epoch):
with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape:
gen_output = self.generator(input_image, training=True)
disc_real_output = self.discriminator([input_image, target], training=True)
disc_generated_output = self.discriminator([input_image, gen_output], training=True)
gen_total_loss, gen_gan_loss, gen_l1_loss = self._generator_loss(disc_generated_output, gen_output, target)
disc_loss = self._discriminator_loss(disc_real_output, disc_generated_output)
generator_gradients = gen_tape.gradient(gen_total_loss, self.generator.trainable_variables)
discriminator_gradients = disc_tape.gradient(disc_loss, self.discriminator.trainable_variables)
self.generator_optimizer.apply_gradients(zip(generator_gradients, self.generator.trainable_variables))
self.discriminator_optimizer.apply_gradients(zip(discriminator_gradients, self.discriminator.trainable_variables))
with summary_writer.as_default():
tf.summary.scalar('gen_total_loss', gen_total_loss, step=epoch)
tf.summary.scalar('gen_gan_loss', gen_gan_loss, step=epoch)
tf.summary.scalar('gen_l1_loss', gen_l1_loss, step=epoch)
tf.summary.scalar('disc_loss', disc_loss, step=epoch)
for epoch in range(epochs):
start = time.time()
ipy.display.clear_output(wait=True)
for example_input, example_target in test_ds.take(1):
# Note: The training=True is intentional here since we want the batch statistics while running the model on the test dataset.
# If we use training=False, we will get the accumulated statistics learned from the training dataset (which we don't want)
prediction = self.generator(example_input, training=True)
ImgUtil.plot_imgtens(example_input, example_target, prediction, os.path.join(pth_rslts, "{:04d}".format(epoch)) )
# Train
print("Epoch: ", epoch)
for n, (input_image, target) in train_ds.enumerate():
print('.', end='')
if (n+1) % 100 == 0: print()
train_step(input_image, target, epoch)
print()
# saving (checkpoint) the model every epochs_per_save epochs
if (epoch + 1) % epochs_per_save == 0: self.checkpoint.save(file_prefix = checkpoint_prefix)
print('Time taken for epoch {} is {} sec\n'.format(epoch+1, time.time()-start))
self.checkpoint.save(file_prefix = checkpoint_prefix)