-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_evaluate.py
181 lines (155 loc) · 8.92 KB
/
run_evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import os
import numpy as np
import torch
import argparse
import _thread as thread
import visdom as vis
from configs import paths
from configs.poseMF_shapeGaussian_net_config import get_cfg_defaults
from data.datasets.pw3d_eval_dataset import PW3DEvalDataset
from data.datasets.ssp3d_eval_dataset import SSP3DEvalDataset
from models.fully_parametric_net import FullyParametricNet
from models.smpl_official import SMPL
from models.poseMF_shapeGaussian_net import PoseMFShapeGaussianNet
from models.canny_edge_detector import CannyEdgeDetector
from models.parametric.tn import ParametricModel
#from evaluate.evaluate_poseMF_shapeGaussian_net import evaluate_pose_MF_shapeGaussian_net
from evaluate.evaluate_poseMF_shapeGaussian_net import evaluate_pose_MF_shapeGaussian_net
from rendering.body import BodyRenderer
from utils.garment_classes import GarmentClasses
from vis.logger import VisLogger
def run_evaluate(device,
pose_shape_weights_path,
pose_shape_cfg_path=None,
num_samples_for_metrics=10,
gender='male',
upper_class='t-shirt',
lower_class='pant',
visdom=None):
# ------------------ Models ------------------
# Config
pose_shape_cfg = get_cfg_defaults()
if pose_shape_cfg_path is not None:
pose_shape_cfg.merge_from_file(pose_shape_cfg_path)
print('\nLoaded Distribution Predictor config from', pose_shape_cfg_path)
else:
print('\nUsing default Distribution Predictor config.')
# Edge detector
edge_detect_model = CannyEdgeDetector(non_max_suppression=pose_shape_cfg.DATA.EDGE_NMS,
gaussian_filter_std=pose_shape_cfg.DATA.EDGE_GAUSSIAN_STD,
gaussian_filter_size=pose_shape_cfg.DATA.EDGE_GAUSSIAN_SIZE,
threshold=pose_shape_cfg.DATA.EDGE_THRESHOLD).to(device)
# SMPL neutral/male/female models
smpl_model = SMPL(paths.SMPL_DIR,
batch_size=1,
num_betas=pose_shape_cfg.MODEL.NUM_SMPL_BETAS).to(device)
smpl_immediate_parents = smpl_model.parents.tolist()
smpl_model_male = SMPL(paths.SMPL_DIR,
batch_size=1,
gender='male').to(device)
smpl_model_female = SMPL(paths.SMPL_DIR,
batch_size=1,
gender='female').to(device)
upper_class = 't-shirt'
lower_class = 'pant'
parametric_model = ParametricModel(gender='male',
garment_classes=GarmentClasses(
upper_class=upper_class,
lower_class=lower_class
),
eval=True)
# 3D shape and pose distribution predictor
pose_shape_dist_model = PoseMFShapeGaussianNet(smpl_parents=smpl_immediate_parents,
config=pose_shape_cfg).to(device)
checkpoint = torch.load(pose_shape_weights_path, map_location=device)
pose_shape_dist_model.load_state_dict(checkpoint['best_model_state_dict'])
print('\nLoaded Distribution Predictor weights from', pose_shape_weights_path)
# ------------------ Dataset + Metrics ------------------
metrics = ['PVE', 'PVE-SC', 'PVE-PA', 'PVE-T-SC', 'MPJPE', 'MPJPE-SC', 'MPJPE-PA', 'Chamfer', 'Chamfer-T', 'joints2D-L2E']
exec_time_components = ['edge-time', 'inference-time', 'tailornet-time', 'smpl-time', 'interpenetrations-time']
save_path = './3dpw_eval'
eval_dataset = PW3DEvalDataset(pw3d_dir_path=paths.PW3D_PATH,
config=pose_shape_cfg,
visible_joints_threshold=0.6)
print("\nEvaluating with {} eval examples.".format(str(len(eval_dataset))))
print("Metrics:", metrics)
print("Saving to:", save_path)
if not os.path.exists(save_path):
os.makedirs(save_path)
if visdom is not None:
# Visualizer class to log the evaluation samples.
vis_logger = VisLogger(visdom=visdom) if visdom is not None else None
# Pytorch3D renderer for vertices' visualization
renderer = BodyRenderer(device=device,
batch_size=1,
img_wh=512,
#projection_type='orthographic',
projection_type='perspective',
render_rgb=True,
bin_size=32)
plain_texture = torch.ones(1, 1200, 800, 3, device=device).float() * 0.7
lights_rgb_settings = {'location': torch.tensor([[0., -0.8, -2.0]], device=device, dtype=torch.float32),
'ambient_color': 0.5 * torch.ones(1, 3, device=device, dtype=torch.float32),
'diffuse_color': 0.3 * torch.ones(1, 3, device=device, dtype=torch.float32),
'specular_color': torch.zeros(1, 3, device=device, dtype=torch.float32)}
fixed_cam_t = torch.tensor([[0., -0.2, 2.5]], device=device)
fixed_orthographic_scale = torch.tensor([[0.95, 0.95]], device=device)
else:
vis_logger, renderer, plain_texture, lights_rgb_settings, fixed_cam_t, fixed_orthographic_scale = [None] * 6
# ------------------ Evaluate ------------------
torch.manual_seed(0)
np.random.seed(0)
evaluate_pose_MF_shapeGaussian_net(pose_shape_model=pose_shape_dist_model,
pose_shape_cfg=pose_shape_cfg,
smpl_model_male=smpl_model_male,
smpl_model_female=smpl_model_female,
parametric_model=parametric_model,
edge_detect_model=edge_detect_model,
renderer=renderer,
texture=plain_texture,
lights_rgb_settings=lights_rgb_settings,
fixed_cam_t=fixed_cam_t,
fixed_orthographic_scale=fixed_orthographic_scale,
device=device,
eval_dataset=eval_dataset,
metrics=metrics,
exec_time_components=exec_time_components,
save_path=save_path,
num_samples_for_metrics=num_samples_for_metrics,
sample_on_cpu=True,
vis_logger=vis_logger)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--pose_shape_weights', '-W3D', type=str, default='./model_files/poseMF_shapeGaussian_net_weights.tar')
parser.add_argument('--pose_shape_cfg', type=str, default=None)
parser.add_argument('--num_samples', '-N', type=int, default=10,
help='Number of samples to use for sample-based evaluation metrics.')
parser.add_argument('--gender', '-G', type=str, choices=['male', 'female'],
help='Gender string.')
parser.add_argument('--upper_class', '-U', type=str, choices=['t-shirt', 'shirt'],
help='Upper class string.')
parser.add_argument('--lower_class', '-L', type=str, choices=['pant', 'short-pant'],
help='Lower class string.')
parser.add_argument('--vis', dest='vis', action='store_true',
help='(optional) whether or not to visualize training progress details over time using Visdom')
parser.add_argument('--vport', type=int, default=8888,
help='Epoch to resume experiment from. If resuming, experiment_dir must already exist, with saved model checkpoints and config yaml file.')
parser.add_argument('--gpu', type=int, default=0)
args = parser.parse_args()
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" # see issue #152
os.environ["CUDA_VISIBLE_DEVICES"] = str(args.gpu)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print('\nDevice: {}'.format(device))
if args.vis or args.vport != 8888:
thread.start_new_thread(os.system, (f'visdom -p {args.vport} > /dev/null 2>&1',))
visdom = vis.Visdom(port=args.vport)
else:
visdom = None
run_evaluate(device=device,
pose_shape_weights_path=args.pose_shape_weights,
pose_shape_cfg_path=args.pose_shape_cfg,
num_samples_for_metrics=args.num_samples,
gender=args.gender,
upper_class=args.upper_class,
lower_class=args.lower_class,
visdom=visdom)