-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathposterize.c
570 lines (481 loc) · 18.4 KB
/
posterize.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
/**
Median Cut Posterizer
© 2011-2012 Kornel Lesiński.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details:
<http://www.gnu.org/copyleft/gpl.html>
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <math.h>
#include <stdbool.h>
#include <unistd.h>
#include <getopt.h>
#include "png.h"
#include "rwpng.h"
void optimizeForAverageFilter(
unsigned char pixels[],
int width, int height,
int quantization);
#ifndef MAX
#define MAX(a,b) ((a)>=(b)?(a):(b))
#endif
#define BOTH(a) ((a).color + (a).alpha)
typedef struct {
unsigned char r,g,b,a;
} rgba_pixel;
typedef struct {
unsigned int indices[256];
} palette;
typedef struct {
double color, alpha;
} hist_entry;
inline static void pal_set(palette *pal, const unsigned int val) {
pal->indices[val] = val;
}
inline static bool pal_isset(const palette *pal, const unsigned int val) {
return pal->indices[val] == val;
}
static void pal_init(palette *pal) {
memset(pal->indices, 0, sizeof(pal->indices));
}
static void interpolate_palette_front(const palette *pal, unsigned int mapping[], const bool dither);
static void voronoi(const hist_entry histogram[static 256], palette *pal);
static double palette_error(const hist_entry histogram[static 256], const palette *palette_orig);
static void interpolate_palette_back(const palette *pal, unsigned int mapping[]);
static void posterize(png24_image *img, unsigned int maxlevels, const double maxerror, bool dither, bool verbose);
inline static double int_to_linear(unsigned int value)
{
return value/255.0;
}
// *256 is not off-by-one error.
inline static unsigned int linear_to_int(const double value)
{
const double g = value*256.0;
return g < 255.0 ? g : 255;
}
static double image_gamma, gamma_lut[256];
static void set_gamma(const double gamma)
{
image_gamma = gamma;
for(int i=0; i < 256; i++) gamma_lut[i] = pow(int_to_linear(i), gamma);
}
// Converts gamma 2.2 to linear unit value. Linear color is required for preserving brightness (esp. when dithering).
// call set_gamma first
inline static double gamma_to_linear(unsigned int value)
{
return gamma_lut[value];
}
// Reverses gamma_to_linear.
inline static unsigned int linear_to_gamma(const double value)
{
return linear_to_int(pow(value, 1.0/image_gamma));
}
// median cut "box" in this implementation is actually a line,
// since it only needs to track lowest/highest intensity
struct box {
double sum, variance;
unsigned int start, end;
};
// helper function that gives integer intensity (palette index) from given weights.
// NB: in this function color is linear 0..1, alpha is 0..255!
inline static unsigned int index_from_weights(hist_entry weight, hist_entry sum)
{
const double color_gamma = weight.color ? linear_to_gamma(sum.color/weight.color) * weight.color : 0;
const double mixed_linear = (color_gamma + sum.alpha) / (BOTH(weight) * 255.0);
return linear_to_int(mixed_linear);
}
// average values in a "box" proportionally to frequency of their occurence
// returns linear value (which is a mix of color and alpha components, so can't be gamma-corrected later)
static double weighted_avg_linear(const unsigned int start, const unsigned int end, const hist_entry histogram[static 256])
{
double weight=0,sum=0;
for(unsigned int val=start; val < end; val++) {
weight += BOTH(histogram[val]);
sum += gamma_to_linear(val)*histogram[val].color + int_to_linear(val)*histogram[val].alpha;
}
return weight ? sum/weight : 0;
}
// returns integer index that from weighed average and applies gamma correction proportionally to amount of color
static unsigned int weighted_avg_int(const unsigned int start, const unsigned int end, const hist_entry histogram[static 256])
{
hist_entry weight = {0};
hist_entry sum = {0};
for(unsigned int val=start; val < end; val++) {
weight.color += histogram[val].color;
weight.alpha += histogram[val].alpha;
sum.color += histogram[val].color * gamma_to_linear(val);
sum.alpha += histogram[val].alpha * val;
}
return index_from_weights(weight, sum);
}
// variance (AKA second moment) of the box. Measures how much "spread" the values are
static double variance_in_range(const unsigned int start, const unsigned int end, const hist_entry histogram[static 256])
{
const double avg = weighted_avg_linear(start, end, histogram);
double sum=0;
for(unsigned int val=start; val < end; val++) {
const double color_delta = avg-gamma_to_linear(val);
const double alpha_delta = avg-int_to_linear(val);
sum += color_delta*color_delta*histogram[val].color;
sum += alpha_delta*alpha_delta*histogram[val].alpha;
}
return sum;
}
static double variance(const struct box box, const hist_entry histogram[static 256])
{
return variance_in_range(box.start, box.end, histogram);
}
// Square error. Estimates how well palette "fits" the histogram.
static double palette_error(const hist_entry histogram[static 256], const palette *pal)
{
unsigned int mapping[256];
// the input palette has gaps
interpolate_palette_front(pal, mapping, false);
double sum=0, px=0;
for (unsigned int i=0; i < 256; i++) {
double color_delta = gamma_to_linear(i)-gamma_to_linear(mapping[i]);
double alpha_delta = int_to_linear(i)-int_to_linear(mapping[i]);
sum += color_delta*color_delta*histogram[i].color;
sum += alpha_delta*alpha_delta*histogram[i].alpha;
px += BOTH(histogram[i]);
}
return sum/px;
}
// converts boxes to palette.
// palette here is a sparse array where elem[x]=x is taken, elem[x]=0 is free (except x=0)
static void palette_from_boxes(const struct box boxes[], const int numboxes, const hist_entry histogram[static 256], palette *pal)
{
pal_init(pal);
for(int box=0; box < numboxes; box++) {
pal_set(pal, weighted_avg_int(boxes[box].start, boxes[box].end, histogram));
}
pal_set(pal, 0);
pal_set(pal, 255);
}
/*
1-dimensional median cut, using variance for "largest" box
*/
static unsigned int reduce(const unsigned int maxlevels, const double maxerror, const hist_entry histogram[static 256], palette *pal)
{
unsigned int numboxes=1;
struct box boxes[256];
// build the first "box" that encompasses all values
boxes[0].start=1; // skip first and last entry, as they're always included
boxes[0].end=255;
boxes[0].sum=0;
for(unsigned int i=boxes[0].start; i < boxes[0].end; i++) boxes[0].sum += BOTH(histogram[i]);
boxes[0].variance = 1; // irrelevant for first box
while(numboxes < maxlevels) {
int boxtosplit=-1;
double largest=0;
// pick box to split by choosing one with highest variance
for(int box=0; box < numboxes; box++) {
if (boxes[box].variance > largest && (boxes[box].end-boxes[box].start)>=2) {
largest = boxes[box].variance;
boxtosplit=box;
}
}
if (boxtosplit < 0) {
break;
}
// divide equally by variance
unsigned int bestsplit=0;
double minvariance = INFINITY;
for(unsigned int val=boxes[boxtosplit].start+1; val < boxes[boxtosplit].end-1; val++) {
const double variance = variance_in_range(boxes[boxtosplit].start, val, histogram)
+ variance_in_range(val, boxes[boxtosplit].end, histogram);
if (variance < minvariance) {
minvariance = variance;
bestsplit = val;
}
}
double sum=0;
for(unsigned int i=boxes[boxtosplit].start; i < bestsplit; i++) sum += BOTH(histogram[i]);
// create new boxes from halves
boxes[numboxes].start = boxes[boxtosplit].start;
boxes[numboxes].end = bestsplit;
boxes[numboxes].sum = sum;
boxes[numboxes].variance = variance(boxes[numboxes], histogram);
boxes[boxtosplit].start = bestsplit;
boxes[boxtosplit].sum -= boxes[numboxes].sum;
boxes[boxtosplit].variance = variance(boxes[boxtosplit], histogram);
numboxes++;
if (maxerror > 0 && maxerror != INFINITY) {
palette_from_boxes(boxes, numboxes, histogram, pal);
voronoi(histogram, pal);
if (palette_error(histogram, pal) < maxerror) {
return numboxes;
}
}
}
palette_from_boxes(boxes, numboxes, histogram, pal);
return numboxes;
}
// palette1/2 is for even/odd pixels, allowing very simple "ordered" dithering
static void remap(png24_image *img, const palette *pal, bool dither)
{
unsigned int mapping1[256], mapping2[256];
if (dither) {
// front to back. When dithering, it's biased towards nextval
interpolate_palette_front(pal, mapping1, true);
// back to front, so dithering bias is the other way.
interpolate_palette_back(pal, mapping2);
} else {
interpolate_palette_front(pal, mapping1, false);
memcpy(mapping2, mapping1, sizeof(mapping2));
}
for(unsigned int i=0; i < img->height; i++) {
rgba_pixel *const row = (rgba_pixel*)img->row_pointers[i];
for(unsigned int j=0; j < img->width; j++) {
const unsigned int *map = (i^j)&1 ? mapping1 : mapping2;
const rgba_pixel px = row[j];
if (map[px.a]) {
row[j] = (rgba_pixel){
.r = map[px.r],
.g = map[px.g],
.b = map[px.b],
.a = map[px.a],
};
} else {
// clear "dirty alpha"
row[j] = (rgba_pixel){0,0,0,0};
}
}
}
}
// it doesn't count unique colors, only intensity values of all channels
static void intensity_histogram(const png24_image *img, hist_entry histogram[static 256])
{
for(unsigned int i=0; i < img->height; i++) {
const rgba_pixel *const row = (rgba_pixel*)img->row_pointers[i];
for(unsigned int j=0; j < img->width; j++) {
const rgba_pixel px = row[j];
// opaque colors get more weight
const double weight = px.a/255.0;
// color and alpha are tracked separately, because
// difference between colors is non-linear (gamma applies)
// e.g. dark colors are less visually distinct than low alpha values
histogram[px.r].color += weight*0.975;
histogram[px.g].color += weight*0.975;
histogram[px.b].color += weight*0.975;
// a little weight in non-gamma values, this is a fudge to fix some banding errors
histogram[px.r].alpha += weight*0.025;
histogram[px.g].alpha += weight*0.025;
histogram[px.b].alpha += weight*0.025;
histogram[px.a].alpha += 1.0 + 3.0*(1.0-weight);
}
}
}
// interpolates front-to-back. If dither is true, it will bias towards one side
static void interpolate_palette_front(const palette *pal, unsigned int mapping[], const bool dither)
{
unsigned int nextval=0, lastval=0;
assert(pal_isset(pal,0));
assert(pal_isset(pal,255));
for(unsigned int val=0; val < 256; val++) {
if (pal_isset(pal, val)) {
lastval = val;
for(unsigned int j=val+1; j < 256; j++) {
if (pal_isset(pal, j)) {nextval=j; break;}
}
}
const double lastvaldiff = (int_to_linear(val) - int_to_linear(lastval));
const double nextvaldiff = (int_to_linear(nextval) - int_to_linear(val));
if (!dither) {
mapping[val] = lastvaldiff < nextvaldiff ? lastval : nextval;
} else {
mapping[val] = lastvaldiff/2 < nextvaldiff ? lastval : nextval;
}
}
}
// interpolates back-to-front. Always biased for dither.
static void interpolate_palette_back(const palette *pal, unsigned int mapping[])
{
unsigned int nextval=255, lastval=255;
for(int val=255; val >= 0; val--) {
if (pal_isset(pal, val)) {
lastval = val;
for(int j=val-1; j >= 0; j--) {
if (pal_isset(pal, j)) {nextval=j; break;}
}
}
const double lastvaldiff = (int_to_linear(val) - int_to_linear(lastval));
const double nextvaldiff = (int_to_linear(nextval) - int_to_linear(val));
mapping[val] = lastvaldiff/2 >= nextvaldiff ? lastval : nextval;
}
}
static void usage(const char *exepath)
{
const char *name = strrchr(exepath, '/');
if (name) name++; else name = exepath;
fprintf(stderr, "Median Cut PNG Posterizer 2.1 (2015).\n" \
"Usage: %s [-vdb] [-Q <quality>] [levels] [input file] [output file]\n\n" \
"Specify number of levels (2-255) or quality (10-100).\n" \
"-b blurize mode (uses diagonal averaging filter, recommended)\n" \
"-d enables dithering\n" \
"-v verbose output (to stderr)\n\n" \
"If files are not specified stdin and stdout is used.\n"
"%s -Q 95 in.png out.png\n", name, name);
}
// performs voronoi iteration (mapping histogram to palette and creating new palette from remapped values)
// this shifts palette towards local optimum
static void voronoi(const hist_entry histogram[static 256], palette *pal)
{
unsigned int mapping[256];
interpolate_palette_front(pal, mapping, false);
hist_entry weights[256] = {{0}};
hist_entry sums[256] = {{0}};
// remap palette
for (unsigned int val=0; val < 256; val++) {
int best = mapping[val];
if (0==best || 255==best) continue; // those two are guaranteed to be present, so ignore their influence
weights[best].color += histogram[val].color;
weights[best].alpha += histogram[val].alpha;
sums[best].color += histogram[val].color * gamma_to_linear(val);
sums[best].alpha += histogram[val].alpha * val;
}
pal_init(pal);
// rebuild palette from remapped averages
for(unsigned int i=1; i < 255; i++) {
if (BOTH(weights[i])) {
pal_set(pal, index_from_weights(weights[i], sums[i]));
}
}
pal_set(pal, 0);
pal_set(pal, 255);
}
static double quality_to_mse(long quality)
{
if (quality == 0) return INFINITY;
// curve fudged to be roughly similar to quality of libjpeg
// except lowest 10 for really low number of colors
const double extra_low_quality_fudge = MAX(0,0.016/(0.001+quality) - 0.001);
return (extra_low_quality_fudge + 2.5/pow(210.0 + quality, 1.2) * (100.1-quality)/100.0) / 6.0;
}
static unsigned int mse_to_quality(double mse)
{
for(int i=100; i > 0; i--) {
if (mse <= quality_to_mse(i)) return i;
}
return 0;
}
#include <unistd.h>
#if defined(WIN32) || defined(__WIN32__)
#include <fcntl.h>
#include <io.h>
#else
#define setmode(what,ever)
#endif
int main(int argc, char *argv[])
{
bool dither = false, verbose = false;
bool blurize = false;
int quality = 0;
int ch;
while ((ch = getopt(argc, argv, "hvdq:Q:b")) != -1) {
switch (ch) {
case 'b': blurize = true; break;
case 'd': dither = true; break;
case 'v': verbose = true; break;
case 'q':
case 'Q':
quality = atol(optarg);
break;
case '?': case 'h':
default:
usage(argv[0]);
return 1;
}
}
int argn = optind;
int maxlevels = quality > 0 ? 255 : 0;
if (argn < argc) {
char *levels_end;
unsigned long levels = strtoul(argv[argn], &levels_end, 10);
if (levels_end != argv[argn] && '\0' == levels_end[0]) {
maxlevels = levels;
argn++;
}
}
if (maxlevels < 2 || maxlevels > 255) {
usage(argv[0]);
return 1;
}
FILE *input = stdin;
const char *input_name = "stdin";
if (argn < argc && 0 != strcmp("-",argv[argn])) {
input_name = argv[argn++];
input = fopen(input_name, "rb");
}
FILE *output = stdout;
const char *output_name = "stdout";
if (argn < argc && 0 != strcmp("-",argv[argn])) {
output_name = argv[argn++];
output = fopen(output_name, "wb");
}
if (argn != argc) {
usage(argv[0]);
return 1;
}
setmode(1, O_BINARY);
setmode(0, O_BINARY);
png24_image img;
pngquant_error retval;
if ((retval = rwpng_read_image24(input, &img, verbose))) {
fprintf(stderr, "Error: cannot read PNG from %s\n", input_name);
return retval;
}
if (input != stdin) fclose(input);
set_gamma(1.0/img.gamma);
if (blurize) {
const int quantization = quality ? (103 - quality)/2.6 : 256 - maxlevels;
optimizeForAverageFilter(img.rgba_data, img.width, img.height, quantization);
} else {
double maxerror = quality_to_mse(quality);
posterize(&img, maxlevels, maxerror, dither, verbose);
}
if ((retval = rwpng_write_image24(output, &img, blurize ? PNG_FILTER_VALUE_AVG : PNG_FILTER_VALUE_NONE))) {
fprintf(stderr, "Error: cannot write PNG to %s\n", output_name);
return retval;
}
if (output != stdout) fclose(output);
return 0;
}
static void posterize(png24_image *img, unsigned int maxlevels, const double maxerror, bool dither, bool verbose)
{
hist_entry histogram[256]={{0}};
intensity_histogram(img, histogram);
// reserve colors for black and white
// and omit them from histogram to avoid confusing median cut
unsigned int reservedcolors=0;
if (BOTH(histogram[0]) >= 1.0 && maxlevels > 2) {
maxlevels--;reservedcolors++;
histogram[0]=(hist_entry){0,0};
}
if (BOTH(histogram[255]) >= 1.0 && maxlevels > 2) {
maxlevels--;reservedcolors++;
histogram[255]=(hist_entry){0,0};
}
palette pal;
unsigned int levels = reduce(maxlevels, maxerror, histogram, &pal);
double last_err = INFINITY;
for(unsigned int j=0; j < 100; j++) {
voronoi(histogram, &pal);
double new_err = palette_error(histogram, &pal);
if (new_err == last_err) break;
last_err = new_err;
}
if (verbose) {
fprintf(stderr, "MSE=%.3f (Q=%d, %u levels)\n", last_err*65536.0, mse_to_quality(last_err), levels+reservedcolors);
}
remap(img, &pal, dither);
}