-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathsimpulse.hpp
235 lines (191 loc) · 11.3 KB
/
simpulse.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
//
// simpulse: a library for simulating pulses in radio astronomy.
//
// Right now there isn't much here, just a class representing a single channelized, dispersed,
// scattered pulse. In the future I may add more features (e.g. pulsars and scintillated pulses).
//
#ifndef _SIMPULSE_HPP
#define _SIMPULSE_HPP
#if (__cplusplus < 201103) && !defined(__GXX_EXPERIMENTAL_CXX0X__)
#error "This source file needs to be compiled with C++0x support (g++ -std=c++0x)"
#endif
#include <iostream>
#include <string>
#include <vector>
#include <memory>
#include <cmath>
namespace simpulse {
#if 0
}; // pacify emacs c-mode
#endif
// Returns dispersion delay in seconds
// The 'DM' parameter is the dispersion measure in its standard units (pc cm^{-3})
inline double dispersion_delay(double dm, double freq_MHz)
{
return 4.148806e3 * dm / (freq_MHz * freq_MHz);
}
// Returns scattering time in seconds
// We define the 'SM' to be the scattering time in _milliseconds_ (not seconds) at 1 GHz
inline double scattering_time(double sm, double freq_MHz)
{
return 1.0e-3 * sm / pow(freq_MHz/1000.0, 4.4);
}
// -------------------------------------------------------------------------------------------------
//
// struct single_pulse: represents one dispersed, scattered pulse, in a fixed frequency channelization.
//
struct single_pulse {
int pulse_nt; // number of samples used "under the hood" to represent pulse (1024 is usually a good default)
int nfreq; // number of frequency channels, assumed equally spaced
double freq_lo_MHz; // lower limit of frequency band
double freq_hi_MHz; // upper limit of frequency band
double dm; // dispersion measure in its standard units (pc cm^{-3})
double sm; // we define the "scattering measure" SM to be scattering time in milliseconds at 1 GHz
double intrinsic_width; // frequency-independent Gaussian width in seconds
double fluence; // F(nu_0) = int I(t) dt evaluated at central frequency
double spectral_index; // F(nu) = F(nu_0) (nu/nu_0)^alpha
double undispersed_arrival_time; // arrival time at nu=infty, in seconds relative to an arbitrary origin.
//
// Under-the-hood representation of the pulse.
// This shouldn't be needed from the outside world.
// Note that all "internal" times are relative to undispersed_arrival_time.
//
std::vector<double> pulse_t0; // start time of pulse in i-th channel, relative to undispersed_arrival_time
std::vector<double> pulse_t1; // end time of pulse in i-th channel, relative to undispersed_arrival_time
std::vector<double> pulse_freq_wt; // weight of pulse in i-th channel, determined by spectral index.
std::vector<double> pulse_cumsum; // shape (nfreq, pulse_nt+1) array, containing cumulative sum of pulse, normalized to sum=1
double min_t0; // minimum of all pulse_t0 values
double max_t1; // maximum of all pulse_t1 values
double max_dt; // maximum of all (pulse_t1-pulse_t0) values
//
// Constructor arguments:
//
// pulse_nt = number of samples used "under the hood" to represent the pulse (suggest power of two; 1024 is usually a good choice).
// nfreq, freq_lo_MHz, freq_hi_MHz = specification of frequency channels (assumed equally spaced).
// dm = dispersion measure in its standard units (pc cm^{-3}).
// sm = scattering measure, which we define to be scattering time in milliseconds (not seconds!) at 1 GHz.
// intrinsic_width = frequency-independent Gaussian width in seconds (not milliseconds).
// fluence = integrated flux in units Jy-s (where "Jy" really means "whatever units the output of add_to_timestream() has")
// undispersed_arrival_time = arrival time of pulse as freq->infty, in seconds relative to an arbitrary origin
//
single_pulse(int pulse_nt, int nfreq, double freq_lo_MHz, double freq_hi_MHz,
double dm, double sm, double intrinsic_width, double fluence,
double spectral_index, double undispersed_arrival_time);
void set_fluence(double fluence);
void set_spectral_index(double spectral_index);
void set_undispersed_arrival_time(double undispersed_arrival_time);
// Returns the earliest and latest arrival times in the band [freq_lo_MHz, freq_hi_MHz].
// (Note that both of these will be larger than single_pulse::undispersed_arrival_time, unless the intrinsic width is very large).
void get_endpoints(double &t0, double &t1) const;
//
// This routine adds the pulse to a "block" of (frequency, time) samples.
// It is sometimes called incrementally, as a stream of blocks generated.
//
// The 'out_t0' and 'out_t1' args are the endpoints of the sampled region, in seconds relative
// to the undispersed_arrival_time.
//
// The 'out' arg is a 2d array with shape (nfreq, out_nt).
// The 'stride' is the pointer offset between frequencies. If stride=0 then it defaults to out_nt.
//
// The frequencies are assumed ordered from lowest to highest.
// WARNING: this is the opposite of the ordering used in rf_pipelines and bonsai!!
//
// If the highest-to-lowest ordering is desired, it can be obtained by using a negative stride
// (and taking 'out' to point to the last row of the array rather than the first row)
//
template<typename T> void add_to_timestream(T *out, double out_t0, double out_t1, int out_nt, int stride=0, double weight=1.) const;
// Returns the total number of samples required to represent this
// pulse in sparse form. The result of this function should be
// used to initialize the "T *out" array that will be passed to
// add_to_timestream_sparse().
int get_n_sparse(double out_t0, double out_t1, int out_nt) const;
// Produces a sparse representation of this pulse.
// - T *out: must have size at least get_n_sparse(). The samples for all
// frequencies will be packed into this array in order.
// - int *out_i0: must be an array with *nfreq* elements. The samples for
// frequency *i* start at time index *out_i0[i]* in the dense sample array.
// - int *out_n: must be an array with *nfreq* elements. The number of samples
// for frequency *i*. Samples for freq *i* go from *out_i0[i]* to *out_i0[i] + out_n[i]*.
// - double out_t0, double out_t1 are the start and stop times (in seconds) of the dense output array.
// - int out_nt is the number of samples in the dense output array (so sample period is *dt = (out_t1 - out_t0)/out_nt*)
// - double weight: is a scaling factor for the amplitude of the pulse.
// Note that to find the start of frequency *i* in the *out* sample array, one must
// compute the cumulative sum of the *out_n* up to index *i-1*.
// Note: By default, the frequencies are assumed ordered from lowest to highest.
template<typename T> void add_to_timestream_sparse(T *out, int *out_i0, int *out_n,
double out_t0, double out_t1, int out_nt, double weight=1.) const;
//
// Returns total signal-to-noise for all frequency channels and time samples combined.
// The signal-to-noise of a sampled pulse depends on 'sample_dt', the length of a sample in seconds.
//
// In principle, it also depends on 'sample_t0', the starting time of an arbitrarily chosen sample,
// although this dependence will be weak in realistic cases!
//
double get_signal_to_noise(double sample_dt, double sample_rms=1.0, double sample_t0=0.0) const;
// Here is a version of get_signal_to_noise() which takes length-nfreq arrays 'sample_rms' and 'channel_weights'.
// If 'channel_weights' are unspecified, then 1/sample_rms^2 weighting will be assumed.
double get_signal_to_noise(double sample_dt, const double *sample_rms, const double *channel_weights=NULL, double sample_t0=0.0) const;
// String representation
void print(std::ostream &os) const;
std::string str() const;
// Internal helper function
void _compute_freq_wt();
// We make the single_pulse noncopyable, even though the default copy constructor is a sensible "deep" copy.
// We do this to catch performance bugs, since a deep copy of a single_pulse is probably unintentional.
single_pulse(const single_pulse &) = delete;
single_pulse& operator=(const single_pulse &) = delete;
};
inline std::ostream &operator<<(std::ostream &os, const single_pulse &sp) { sp.print(os); return os; }
// -------------------------------------------------------------------------------------------------
//
// Pulsar stuff
struct phase_model {
// Can be called with nderivs=0 to get the phase model Phi(t), or nderivs > 0 to get derivatives of phi
virtual double eval(double t, int nderivs=0) const = 0;
// Returns mean phi over a given range.
virtual double eval_mean_phi(double t1, double t2) const = 0;
// Vectorized version of eval().
// No 'nderivs' argument for now, but I may add it later!
virtual void eval_phi(int nt, double *phi_out, const double *t_in) const = 0;
static std::shared_ptr<phase_model> make_constant_acceleration(double phi0, double omega0, double omega_dot, double t0=0.0);
};
// For now, the only pulse_profile we consider is the von Mises profile.
// We define the duty cycle to be (pulse FWHM) / (pulse period).
struct von_mises_profile {
double duty_cycle = 0.0;
int nphi = 0;
int nphi2 = 0; // = nphi/2+1
std::vector<double> profile_fft; // length nphi2, normalized to profile_fft[0]=1.
std::vector<double> profile_antider; // padded to length (nphi+1)
// An interpolation used to store the function N(x) = \sum_{n\ne 0} | rho_n j_0(nx/2) |^2 as a function of x.
std::vector<double> ntab;
double ntab_xmax;
int ntab_size;
// If min_nphi=0, then a reasonable default will be chosen (recommended).
von_mises_profile(double duty_cycle, int min_nphi=0);
// Note: 'out' is an array of length nt, but 'phi' is an array of length (nt+1).
// The i-th sample is assumed to span phase range (phi[i], phi[i+1]).
// This routine is pretty fast (~5e7 samples/sec on my laptop) but could be vectorized to run faster.
// The amplitude has units of intensity.
void eval(int nt, double *out, const double *phi, bool detrend, double amplitude=1.0) const;
//
// Returns the amplitude which gives signal-to-noise ratio 1. Strictly speaking, the returned
// amplitude is an approximation which is accurate in the limit where the observation contains
// many pulse periods, and the pulse frequency doesn't change much over the observation.
//
// eta = a noise parameter with units intensity-time^(1/2)
// omega = angular pulse frequency
// tsamp = timestream sample length
// T = total timestream length
//
// Note that 'omega' and 'tsamp' are only used for determining the finite-sample correction.
// This correction can be disabled by either setting omega=0 or tsamp=0.
//
// FIXME: it may be convenient later to implement a vectorized version which evaluates
// on a grid of omega values.
//
double get_normalization(double eta, double omega, double tsamp, double T, bool detrend) const;
static int default_nphi(double duty_cycle);
};
} // namespace simpulse
#endif // _SIMPULSE_HPP