-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathch_vdif_assembler.py
465 lines (328 loc) · 16.4 KB
/
ch_vdif_assembler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
"""
ch_vdif_assembler: a module for analysis of CHIME high-speed data.
This is the python version, which is too slow for real-time processing,
but useful for prototyping. For "production" you probably want to use
the C++ version.
See toy-python-assembler.py for an example. The basic steps are:
- Construct an object of type vdif_assembler.
- Define a "processor" class and register it with the assembler.
This should be a subclass of class vdif_processor, see below.
See class python_waterfall_plotter below for an example.
- Register the processor with vdif_assembler.register_processor().
You can also register one more more C++ processors. Right now the
only C++ processor which is exported via cython is cpp_waterfall_plotter
(see below, or example usage in toy-python-assembler.py). You can
run any number of C++ processors, and either 0 or 1 python processors,
in parallel (each processor will run in a separate threads).
- Create an object of type vdif_stream, which represents the high-speed
data stream to be processed. Since python will probably be too slow
for real-time use, the stream will probably be one of:
make_file_stream() - pass a list of vdif filenames
moose_acquisition() - pass the name of an acqusition on moose, e.g. '41537'
- Call vdif_assembler.run()
For more documentation, see the C++ source file ch_vdif_assembler.hpp, which
is better commented!
"""
import os
import re
import sys
import errno
import numpy as np
import ch_vdif_assembler_cython
class constants:
chime_nfreq = ch_vdif_assembler_cython.chime_nfreq # 1024
timestamps_per_frame = ch_vdif_assembler_cython.timestamps_per_frame # 2^23 (cadence of noise source)
num_disks = ch_vdif_assembler_cython.num_disks # 10 (moose)
class assembler:
def __init__(self, write_to_disk=False, rbuf_size=constants.num_disks, abuf_size=4, assembler_nt=65536):
self._assembler = ch_vdif_assembler_cython.assembler(write_to_disk, rbuf_size, abuf_size, assembler_nt)
self.python_processor = None
def register_processor(self, p):
if isinstance(p, ch_vdif_assembler_cython.cpp_processor):
self._assembler.register_cpp_processor(p) # register C++ processor (this actually spawns a processing thread)
elif not isinstance(p, processor):
raise RuntimeError('Argument to assembler.register_processor() must be either an object of class ch_vdif_assembler.processor, or a C++ processor (e.g. returned by make_waterfall_plotter)')
elif self.python_processor is not None:
raise RuntimeError('Currently, ch_vdif_assembler only allows registering one python processor (but an arbitrary number of C++ processors)')
else:
self.python_processor = p
def run(self, stream):
if self.python_processor is None:
self._assembler.start_async(stream)
self._assembler.wait_until_end()
return
self._assembler.register_python_processor()
try:
self._assembler.start_async(stream)
while True:
chunk = self._assembler.get_next_python_chunk()
if chunk is None:
break
(t0, nt, efield, mask) = chunk.get_data()
self.python_processor.process_chunk(t0, nt, efield, mask)
self.python_processor.finalize()
finally:
self._assembler.unregister_python_processor()
self._assembler.wait_until_end()
######################################## Streams ########################################
def make_file_stream(filename_list):
"""Returns a stream object from a list of vdif_filenames."""
return ch_vdif_assembler_cython.make_file_stream(filename_list)
def moose_acquisition(acq_name):
"""
Helper function which returns a stream object corresponding to one acqusition on moose.
The acq_name can be either a complete acquisition name, e.g. '20150910T041537Z_chime_beamformed',
or a uniquely determining substring, e.g. '41537'. For a list of all acquisitions, you may find
the script show-moose-acquisitions.py useful.
"""
filename_list = moose_filename_list(acq_name)
return ch_vdif_assembler_cython.make_file_stream(filename_list)
def make_network_stream():
"""
Returns a network stream, but the python processor will probably see a lot of missing
chunks since it will be too slow to keep up!
"""
return ch_vdif_assembler_cython.make_network_stream()
def make_simulated_stream(gbps=6.4, nsec=60.0):
"""
Returns a simualted 6.4 Gpbs stream, but the python processor will probably see a lot of missing
chunks since it will be too slow to keep up!
"""
return ch_vdif_assembler_cython.make_simulated_stream(gbps, nsec)
######################################## Processors ########################################
def cpp_waterfall_plotter(outdir, is_critical=False):
"""This is the C++ version of the waterfall plotter, exported via cython."""
# Create directory if it doesn't already exist
try:
os.makedirs(outdir)
except OSError, exc:
if (exc.errno != errno.EEXIST) or not os.path.isdir(outdir):
raise
return ch_vdif_assembler_cython.cpp_waterfall_plotter(outdir, is_critical)
class processor:
"""
To define a python processor, you subclass this base class.
When the assembler runs, it will call process_chunk() with a sequence of chunks, represented
by a (t0,nt,efield,mask) quadruple.
Each chunk corresponds to range of timestamps [t0,t0+nt), where t0 is a 64-bit wraparound-free
timestamp.
WARNING 1: Usually these ranges will be contiguous between calls, e.g.
[t0,t0+nt) [t0+nt,t0+2*nt) [t0+2*nt,t0+3*nt) ...
but the vdif_processor should not assume that this! If there is a temporary
interruption in data stream, then a timestamp gap will appear.
The 'efield' arg is a shape (nfreq,2,nt) complex array with electric field values, where
the middle index is polarziation. Missing data is represented by (0+0j). The 'mask' arg
is a shape (nfreq,2,nt) integer array which is 0 for missing data, and 1 for non-missing.
WARNING 2: Handling missing data is an important aspect of the vdif_processor since it
happens all the time. If a GPU correlator node is down, which is a frequent occurrence,
then some frequencies will be "all missing". There are also routine packet loss events
on second-timescales which result in some high-speed samples being flagged as missing data.
"""
def process_chunk(self, t0, nt, efield, mask):
print 'process_chunk called! t0=%s nt=%s efield (%s,%s) mask (%s,%s)' % (t0, nt, efield.dtype, efield.shape, mask.dtype, mask.shape)
def finalize(self):
pass
####################################################################################################
#
# Some classes and helper functions for inventory-ing acquisitions on moose.
#
# See also the script show-moose-acquisitions.py
class moose_inventory:
def __init__(self):
suffixes = [ '_chime_beamformed', '_vdif_assembler' ]
self.topdirs = [ ('/drives/G/%d' % i) for i in xrange(10) ]
self.subdirs = set()
for t in self.topdirs:
for s in os.listdir(t):
if not any(s.endswith(suffix) for suffix in suffixes):
continue
if len(os.listdir(os.path.join(t,s))) == 0:
continue # skip empty "acquisitions"
self.subdirs.add(s)
self.subdirs = sorted(self.subdirs)
def __iter__(self):
for s in self.subdirs:
yield s
def match(self, name):
candidate_subdirs = [ s for s in self.subdirs if s.find(name) >= 0 ]
if len(candidate_subdirs) == 0:
raise RuntimeError("%s: no matching acquisition found" % name)
if len(candidate_subdirs) > 1:
raise RuntimeError("%s: multiple matching acquisitions found: %s" % (name, sorted(candidate_subdirs)))
return candidate_subdirs.pop()
def get_filename_list(self, subdir):
subdir = self.match(subdir) # disambiguate
filename_hash = { } # hash integer index -> filename
for t in self.topdirs:
d = os.path.join(t, subdir)
if not os.path.exists(d):
continue
for f in os.listdir(d):
df = os.path.join(d,f)
m = re.match(r'(\d+)\.dat', f)
if not m:
print >>sys.stderr, "Warning: stray file '%s' found in acquisition directory" % df
continue
i = int(m.group(1))
if filename_hash.has_key(i):
print >>sys.stderr, "Warning: redundant acquisition files exist? (%s and %s)" % (filename_hash[i], df)
continue
filename_hash[i] = df
if len(filename_hash) == 0:
return [ ]
filename_list = [ ]
nmissing = 0
for i in xrange(max(filename_hash.keys()) + 1):
if not filename_hash.has_key(i):
nmissing += 1
continue
filename_list.append(filename_hash.pop(i))
if nmissing > 0:
print >>sys.stderr, 'Warning: in acquisition %s, %d files were missing' % (subdir, nmissing)
return filename_list
def moose_filename_list(name):
mi = moose_inventory()
subdir = mi.match(name)
return mi.get_filename_list(subdir)
####################################################################################################
#
# python waterfall plotter
#
# I originally prototyped this in python, then re-implemented in C++ because the python version was
# too slow. I left the python version intact since it's a good reference for implementing processors.
#
# This means that there are currently two waterfall plotters, the C++ version which is faster, or
# and the python version which is simpler code.
try:
import PIL.Image
except:
print >>sys.stderr, 'ch_vdif_assembler: import PIL.Image failed; everything will still work except python_waterfall_plotter'
class python_waterfall_plotter(processor):
"""FIXME this should use the downsampled_intensity helper class, but it hasn't been cythonized yet!"""
def __init__(self, outdir):
self.outdir = outdir
self.imgdir = os.path.join(outdir, 'img')
self.nt_bins = 1024
self.curr_frame = None
# Create output dirs, but don't throw an exception if they already exist
try:
os.makedirs(self.imgdir)
except OSError, exc:
if (exc.errno != errno.EEXIST) or not os.path.isdir(self.imgdir):
raise
def process_chunk(self, t0, nt, efield, mask):
assert efield.shape == (constants.chime_nfreq, 2, nt)
assert efield.dtype == np.complex64
# Square electric field to get visibilities
vis = efield.real**2 + efield.imag**2
frame = t0 // constants.timestamps_per_frame
if self.curr_frame is None:
self.acc_num = np.zeros((constants.chime_nfreq, 2, self.nt_bins))
self.acc_den = np.zeros((constants.chime_nfreq, 2, self.nt_bins))
self.curr_frame = frame
elif self.curr_frame != frame:
self.write_images()
self.acc_num = np.zeros((constants.chime_nfreq, 2, self.nt_bins))
self.acc_den = np.zeros((constants.chime_nfreq, 2, self.nt_bins))
self.curr_frame = frame
# Number of timestamps per bin
tt = constants.timestamps_per_frame // self.nt_bins
# These assumptions simplify the code, but could be removed if necessary
assert constants.timestamps_per_frame % self.nt_bins == 0
assert t0 % tt == 0
assert nt % tt == 0
b0 = (t0 // tt) % self.nt_bins # first waterfall bin in assembled chunk
nb = (nt // tt) # number of waterfall bins in assembled chunk
for b in xrange(nb):
(i, j) = (b*tt, (b+1)*tt)
self.acc_num[:,:,b+b0] += np.sum(vis[:,:,i:j], axis=2)
self.acc_den[:,:,b+b0] += np.sum(mask[:,:,i:j], axis=2)
def finalize(self):
if self.curr_frame is not None:
self.write_images()
def write_images(self):
self.acc_num = self.subtract_medians(self.acc_num, self.acc_den)
thumbnail_num = self.downgrade(self.acc_num, 256, 256)
thumbnail_den = self.downgrade(self.acc_den, 256, 256)
for pol in [0,1]:
filename1 = '%s/full_pol%d_frame%d.png' % (self.imgdir, pol, self.curr_frame)
filename2 = '%s/thumbnail_pol%d_frame%d.png' % (self.imgdir, pol, self.curr_frame)
self.write_image(filename1, self.acc_num[:,pol,:], self.acc_den[:,pol,:])
self.write_image(filename2, thumbnail_num[:,pol,:], thumbnail_den[:,pol,:])
self.curr_frame = None
def subtract_medians(self, num, den):
"""This helper routine applies median subtraction along the last array axis."""
assert num.shape == den.shape
nt = num.shape[-1]
num_rs = np.reshape(num, (-1,nt))
den_rs = np.reshape(den, (-1,nt))
mask_rs = (den_rs > 99.5)
vals_rs = num_rs / np.maximum(den_rs, 1.0) # avoid division by zero
nrs = num_rs.shape[0]
med = np.zeros(nrs)
for i in xrange(nrs):
t = np.extract(mask_rs[i,:], vals_rs[i,:])
if len(t) >= 1:
med[i] = np.median(t)
ret_rs = num_rs - (med[:,np.newaxis] * den_rs)
return np.reshape(ret_rs, num.shape)
def downgrade(self, img, new_nx, new_ny):
"""
This is called on a "polarized" image of shape (old_nx, 2, old_ny).
It returns a downgraded image of shape (new_nx, 2, new_ny).
"""
assert img.shape == (img.shape[0], 2, img.shape[-1])
(old_nx, old_ny) = (img.shape[0], img.shape[-1])
assert old_nx % new_nx == 0
assert old_ny % new_ny == 0
ret = np.reshape(img, (new_nx, old_nx//new_nx, 2, new_ny, old_ny//new_ny))
ret = np.sum(ret, axis=4)
ret = np.sum(ret, axis=1)
return ret
def write_image(self, filename, num, den):
assert (num.shape == den.shape) and (num.ndim == 2)
rgb = np.zeros((num.shape[0], num.shape[1] ,3), dtype=np.uint8)
vvar = self.compute_clipped_variance(num, den)
if vvar > 0.0:
# plot saturates at 2.5 sigma
dv = 2.5 * max(vvar,0.0)**0.5
vis = num / np.maximum(den, 1.0)
mask = (den > 99.5)
vis = 128*vis/dv + 128.
vis = np.array(vis, dtype=np.int)
vis = np.maximum(vis, 0)
vis = np.minimum(vis, 255)
rgb[:,:,0] = np.where(mask, vis, 0)
rgb[:,:,2] = np.where(mask, 255-vis, 0)
#
# PIL has weird plotting conventions: the x-axis of the plot is array index 1,
# and the y-axis of the plot is array index 0 with a sign flip. This turns out
# to be exactly what we want, since we have time in array index 1, and we have
# frequency channel (with the CHIME sign flip) in array index 0. So we can just
# pass the RGB array without any transposes or sign flips.
#
img = PIL.Image.fromarray(rgb)
img.save(filename)
print >>sys.stderr, 'wrote %s' % filename
def compute_clipped_variance(self, num, den):
assert (num.shape == den.shape) and (num.ndim == 2)
mask = (den > 99.5)
vvar = self.compute_variance_outside_mask(num, den, mask)
if vvar <= 0.0:
return 0.0
for n in xrange(3):
# extend mask by clipping at 2 sigma
mask = np.logical_and(mask, num*num < 4*vvar*den*den)
# recompute variance with extended mask
vvar2 = self.compute_variance_outside_mask(num, den, mask)
if vvar2 <= 0.0:
return vvar
vvar = vvar2
return vvar
def compute_variance_outside_mask(self, num, den, mask):
msum = np.sum(mask)
if msum <= 0.5:
return 0.0
# assume denominator is > 0 outside mask (FIXME assert this?)
x = mask * (num*num) / np.maximum(den*den, 1.0)
return np.sum(x) / msum