-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path04model.jl
59 lines (47 loc) · 1.7 KB
/
04model.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
# include("libraries.jl")
# include("functions.jl")
# include("preprocess.jl")
# include("validation_dataset.jl")
# include("minibatch.jl")
# train_set
# validation_set
begin
print("##########################")
print("## Constructing model...##")
print("##########################")
end
m = Chain(
Conv((3,3), 2=>32, pad=(1,1), relu),
MaxPool((2,2)),
Conv((3,3), 32=>64, pad=(1,1), relu),
MaxPool((2,2)),
Conv((3,3), 64=>81, pad=(1,1), relu),
MaxPool((2,2))
)
inputlayersize = Array{Float32}(undef, 9, 9, 2, 32)
model = Chain(
# Apply a Conv layer to a 2-channel (R & O layer) input using a 3x3 window size, giving a 16-channel output. Output is activated by relu
Conv((3,3), 2=>32, pad=(1,1), relu),
# 2x2 window slides over x reducing it to half the size while retaining most important feature information for learning (takes highest/max value)
MaxPool((2,2)),
Conv((3,3), 32=>64, pad=(1,1), relu),
MaxPool((2,2)),
Conv((3,3), 64=>81, pad=(1,1), relu),
MaxPool((2,2)),
# flatten from 3D tensor to a 2D one, suitable for dense layer and training
flatten,
Dense(Int(prod(size(m[1:6](inputlayersize)))/batch_size), Stride*Stride),
#reshape to match Connectivity dimensions
x -> reshape(x, (Stride, Stride, 1, batch_size))
)
# #View layer outputs
model[1](train_set[1][1]) #layer 1: 9x9x16x32
model[1:2](train_set[1][1]) #layer 2: 4x4x16x32
model[1:3](train_set[1][1]) #layer 3: 4x4x32x32
model[1:4](train_set[1][1]) #layer 4: 2x2x32x32
# reshape layer
model[1:5](train_set[1][1]) #layer 5: 128x32
model[1:6](train_set[1][1]) #layer 6: 81x32
model[1:7](train_set[1][1]) #layer 7: 9x9x1x32
model[1:8](train_set[1][1])
model[1:9](train_set[1][1])