-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbenchmarking.m
159 lines (131 loc) · 8.73 KB
/
benchmarking.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
valid_extensions = [".jpg", ".png", ".bmp"];
images_dir = dir('Images');
images_name_list = string([]);
for i = 1:numel(images_dir)
is_image = 0;
file_name = images_dir(i).name;
for j = 1:1:size(valid_extensions, 2)
if endsWith(file_name, valid_extensions(1, j)) == 1
is_image = 1;
break
end
end
if is_image == 1
images_name_list = [images_name_list file_name];
end
end
for i = 1:1:5
image_name = char(images_name_list(1, i));
img = imread(['Images/', image_name]);
mean_value = 0; dev = 10;
img_gaussian = add_gaussian_noise(img, mean_value, dev);
prob = 0.1;
img_impulsive = add_impulsive_noise(img, prob);
process_images(image_name, img, img_gaussian, img_impulsive, mean_value, dev, prob);
end
for i = 6:1:7
means = [0; 0; 30];
devs = [5; 10; 10];
probs = [0.05; 0.1; 0.2];
for j = 1:1:size(means)
image_name = char(images_name_list(1, i));
img = imread(['Images/', image_name]);
mean_value = means(j); dev = devs(j);
img_gaussian = add_gaussian_noise(img, mean_value, dev);
prob = probs(j);
img_impulsive = add_impulsive_noise(img, prob);
process_images(image_name, img, img_gaussian, img_impulsive, mean_value, dev, prob);
end
end
function process_images(image_name, img, img_gaussian, img_impulsive, mean_value, dev, prob)
tic;
img_gaussian_mean = mean_filter(img_gaussian);
elapsed_time_gaussian_mean = toc;
fprintf("Processed %s on gaussian_mean, %s seconds\n", image_name, elapsed_time_gaussian_mean)
mse_gaussian_mean = immse(img, img_gaussian_mean);
[psnr_gaussian_mean, snr_gaussian_mean] = psnr(img, img_gaussian_mean);
[ssim_gaussian_mean, ssimmap_gaussian_mean] = ssim(img, img_gaussian_mean);
tic;
img_gaussian_median = median_filter(img_gaussian);
elapsed_time_gaussian_median = toc;
fprintf("Processed %s on gaussian_median, %s seconds\n", image_name, elapsed_time_gaussian_median)
mse_gaussian_median = immse(img, img_gaussian_median);
[psnr_gaussian_median, snr_gaussian_median] = psnr(img, img_gaussian_median);
[ssim_gaussian_median, ssimmap_gaussian_median] = ssim(img, img_gaussian_median);
tic;
img_impulsive_mean = mean_filter(img_impulsive);
elapsed_time_impulsive_mean = toc;
fprintf("Processed %s on impulsive_mean, %s seconds\n", image_name, elapsed_time_impulsive_mean)
mse_impulsive_mean = immse(img, img_impulsive_mean);
[psnr_impulsive_mean, snr_impulsive_mean] = psnr(img, img_impulsive_mean);
[ssim_impulsive_mean, ssimmap_impulsive_mean] = ssim(img, img_impulsive_mean);
tic;
img_impulsive_median = median_filter(img_impulsive);
elapsed_time_impulsive_median = toc;
fprintf("Processed %s on impulsive_median, %s seconds\n", image_name, elapsed_time_impulsive_median)
mse_impulsive_median = immse(img, img_impulsive_median);
[psnr_impulsive_median, snr_impulsive_median] = psnr(img, img_impulsive_median);
[ssim_impulsive_median, ssimmap_impulsive_median] = ssim(img, img_impulsive_median);
tic;
img_gaussian_bmlut = BMLUTdenoising(img_gaussian);
elapsed_time_gaussian_bmlut = toc;
fprintf("Processed %s on gaussian_BMLUT, %s seconds\n", image_name, elapsed_time_gaussian_bmlut)
mse_gaussian_bmlut = immse(img, img_gaussian_bmlut);
[psnr_gaussian_bmlut, snr_gaussian_bmlut] = psnr(img, img_gaussian_bmlut);
[ssim_gaussian_bmlut, ssimmap_gaussian_bmlut] = ssim(img, img_gaussian_bmlut);
tic;
img_impulsive_bmlut = BMLUTdenoising(img_impulsive);
elapsed_time_impulsive_bmlut = toc;
fprintf("Processed %s on impulsive_BMLUT, %s seconds\n", image_name, elapsed_time_impulsive_bmlut)
mse_impulsive_bmlut = immse(img, img_impulsive_bmlut);
[psnr_impulsive_bmlut, snr_impulsive_bmlut] = psnr(img, img_impulsive_bmlut);
[ssim_impulsive_bmlut, ssimmap_impulsive_bmlut] = ssim(img, img_impulsive_bmlut);
figure(),
subplot(1,3,1), imshow(img), title(['Original image: ', image_name]);
subplot(1,3,2), imshow(img_gaussian), title(['Additive gaussian noise (mean = ', num2str(mean_value), ', dev = ', num2str(dev), ') applied on: ', image_name]);
subplot(1,3,3), imshow(img_impulsive), title(['Impulsive noise (', num2str(prob*100), '%) applied on: ', image_name]);
figure(),
subplot(2,3,1), imshow(img_gaussian_mean), title({'Additive gaussian noise',['(mean = ', num2str(mean_value), ', dev = ', num2str(dev), ')'],['mean-filtered on: ', image_name],['Time: ', num2str(elapsed_time_gaussian_mean), ' s']});
subplot(2,3,2), imshow(img_gaussian_median), title({'Additive gaussian noise',['(mean = ', num2str(mean_value), ', dev = ', num2str(dev), ')'],['median-filtered on: ', image_name],['Time: ', num2str(elapsed_time_gaussian_median), ' s']});
subplot(2,3,3), imshow(img_gaussian_bmlut), title({'Additive gaussian noise',['(mean = ', num2str(mean_value), ', dev = ', num2str(dev), ')'],['BMLUT-filtered on: ', image_name],['Time: ', num2str(elapsed_time_gaussian_bmlut), ' s']});
subplot(2,3,4), imshow(img_impulsive_mean), title({'Impulsive noise',['(', num2str(prob*100), '%)'],['mean-filtered on: ', image_name],['Time: ', num2str(elapsed_time_impulsive_mean), ' s']});
subplot(2,3,5), imshow(img_impulsive_median), title({'Impulsive noise',['(', num2str(prob*100), '%)'],['median-filtered on: ', image_name],['Time: ', num2str(elapsed_time_impulsive_median), ' s']});
subplot(2,3,6), imshow(img_impulsive_bmlut), title({'Impulsive noise',['(', num2str(prob*100), '%)'],['BMLUT-filtered on: ', image_name],['Time: ', num2str(elapsed_time_impulsive_bmlut), ' s']});
figure(),
subplot(2,3,1), imshow(ssimmap_gaussian_mean), title({'SSIM Map for additive gaussian noise',['(mean = ', num2str(mean_value), ', dev = ', num2str(dev), ')'],['mean-filtered on: ', image_name],['SSIM: ', num2str(ssim_gaussian_mean)],['PSNR/SNR: ', num2str(psnr_gaussian_mean), '/', num2str(snr_gaussian_mean), ' db'], ['MSE: ', num2str(mse_gaussian_mean)]});
subplot(2,3,2), imshow(ssimmap_gaussian_median), title({'SSIM Map for additive gaussian noise',['(mean = ', num2str(mean_value), ', dev = ', num2str(dev), ')'],['median-filtered on: ', image_name],['SSIM: ', num2str(ssim_gaussian_median)],['PSNR/SNR: ', num2str(psnr_gaussian_median), '/', num2str(snr_gaussian_median), ' db'], ['MSE: ', num2str(mse_gaussian_median)]});
subplot(2,3,3), imshow(ssimmap_gaussian_bmlut), title({'SSIM Map for additive gaussian noise',['(mean = ', num2str(mean_value), ', dev = ', num2str(dev), ')'],['BMLUT-filtered on: ', image_name],['SSIM: ', num2str(ssim_gaussian_bmlut)],['PSNR/SNR: ', num2str(psnr_gaussian_bmlut), '/', num2str(snr_gaussian_bmlut), ' db'], ['MSE: ', num2str(mse_gaussian_bmlut)]});
subplot(2,3,4), imshow(ssimmap_impulsive_mean), title({'SSIM Map for impulsive noise',['(', num2str(prob*100), '%)'],['mean-filtered on: ', image_name],['SSIM: ', num2str(ssim_impulsive_mean)],['PSNR/SNR: ', num2str(psnr_impulsive_mean), '/', num2str(snr_impulsive_mean), ' db'], ['MSE: ', num2str(mse_impulsive_mean)]});
subplot(2,3,5), imshow(ssimmap_impulsive_median), title({'SSIM Map for impulsive noise',['(', num2str(prob*100), '%)'],['median-filtered on: ', image_name],['SSIM: ', num2str(ssim_impulsive_median)],['PSNR/SNR: ', num2str(psnr_impulsive_median), '/', num2str(snr_impulsive_median), ' db'], ['MSE: ', num2str(mse_impulsive_median)]});
subplot(2,3,6), imshow(ssimmap_impulsive_bmlut), title({'SSIM Map for impulsive noise',['(', num2str(prob*100), '%)'],['BMLUT-filtered on: ', image_name],['SSIM: ', num2str(ssim_impulsive_bmlut)],['PSNR/SNR: ', num2str(psnr_impulsive_bmlut), '/', num2str(snr_impulsive_bmlut), ' db'], ['MSE: ', num2str(mse_impulsive_bmlut)]});
end
function image_out = mean_filter(image_in)
image_out = image_in;
%the mask for the mean filter (3x3 array where all values are 1/9)
mask = ones(3)/9;
channels = size(image_in, 3);
%for every image channel
for i = 1:1:channels
%filter the image using the mask above
image_out(:,:,i) = imfilter(image_in(:,:,i), mask);
end
end
function image_out = median_filter(image_in)
image_out = image_in;
channels = size(image_in, 3);
%for every image channel
for i = 1:1:channels
%use a 3x3 window for the median filter
image_out(:,:,i) = medfilt2(image_in(:,:,i));
end
end
function image_out = add_gaussian_noise(image_in, mean_value, dev)
%get array of random normal random numbers
noise = normrnd(mean_value, dev, size(image_in));
%add the noise array
image_out = uint8(double(image_in) + noise);
end
function image_out = add_impulsive_noise(image_in, prob)
%affect a percentage of all the pixels
image_out = imnoise(image_in, 'salt & pepper', prob);
end