-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathBMLUTdenoising.m
426 lines (386 loc) · 19.2 KB
/
BMLUTdenoising.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
function J = BMLUTdenoising(I)
%get number of image channels
image_channels = size(I, 3);
%set number of gray levels
gray_levels = 256;
%set offset of neighbour pixels array
neighbours = [-1 -1; -1 0; -1 1; 0 -1; 0 1; 1 -1; 1 0; 1 1];
%set offset of window pixels array
window = [-1 -1; -1 0; -1 1; 0 -1; 0 0; 0 1; 1 -1; 1 0; 1 1];
%for every channel in the image
for image_channel = 1:1:image_channels
%get the image channel separately
img = I(:,:,image_channel);
%create the channel's gray co-occurrence matrix with the closest 8
%neighbours
H = graycomatrix(img, 'NumLevels', gray_levels, 'Offset', neighbours);
%since the function gives the co-occurrence matrix for EVERY
%neighbour SEPARATELY, sum up all the matrices
H = sum(H, 3);
%show colormap of 2d histogram/co-ocurrence matrix
%{
figure, imagesc(H), colormap(jet),...
title(['H for channel ', num2str(image_channel)])
%Y-axis values start increasing from the bottom
set(gca, 'YDir', 'normal')
hold on;
%}
%homogeneity lower bound values
h_low = zeros(1, gray_levels);
%homogeneity upper bound values
h_up = zeros(1, gray_levels);
%going through the gray co-occurrence matrix
for i = 1:1:gray_levels
%setting threshold to pass
threshold = 2;
values = [];
for j = 1:1:gray_levels
result = 0;
counter = 0;
%move with a 1x3 window through the matrix
k_values = [-1:1:1];
for k = k_values
if j+k >= 1 && j+k <= 256
result = result + H(i, j+k);
counter = counter + 1;
end
end
%get the mean value
result = result / counter;
%if the value passed the threshold, save the index where it
%happened
if result >= threshold
values = [values j];
%otherwise put -1 in its' place to keep track of failures
else
values = [values -1];
end
end
%if for a value i there are no valid indexes, set the lower and
%upper bound at i to itself
if all(values == -1)
h_up(1, i) = i;
h_low(1, i) = i;
%otherwise search argmax and argmin
else
[~, h_up(1,i)] = max(values);
%here we replace all -1 values with +inf, so the min
%function doesn't choose an invalid index
values(values == -1) = Inf;
[~, h_low(1,i)] = min(values);
end
end
%plot the lower and upper bound values
%{
plot([1:1:gray_levels], h_low, [1:1:gray_levels], h_up), xlim([1 gray_levels]), ylim([1 gray_levels])
%}
%create padded image so we can process all the meaningful pixels
padded_img = padarray(img, [1 1], 'symmetric');
%create array where we keep track of noisy pixels locations
%if noisy_pixels(i, j) == 1 -> noisy pixel
%else -> not a noisy pixel
noisy_pixels = zeros(size(padded_img));
%move with a 3x3 window and a stride of 1
for i = 2:1:size(padded_img,1)-1
for j = 2:1:size(padded_img,2)-1
center_value = padded_img(i, j);
noise_counter = 0;
for k = 1:1:size(neighbours,1)
neighbour_value = padded_img(i+neighbours(k, 1), j+neighbours(k,2));
low_value = h_low(1, center_value + 1);
up_value = h_up(1, center_value + 1);
%checking if the neighbour of the center pixel
%of the window is in the range of homogeneity
if neighbour_value < low_value ||...
neighbour_value > up_value
%if it's not, then we increase the noise counter
noise_counter = noise_counter + 1;
end
end
%if the noise counter is above a certain threshold
if noise_counter >= (75/100) * size(neighbours, 1)
%the center pixel of the moving window is considered
%noisy
noisy_pixels(i, j) = 1;
end
end
end
%plot the appearance of noisy pixels
%{
figure, imagesc(noisy_pixels)
%}
%construct array for keeping track of matching blocks coordinates
matching_blocks = zeros(size(window,1), gray_levels);
%construct array for keeping track of frequency of pixels regarding
%matching blocks
freqs_matching_blocks = zeros(size(window,1), gray_levels);
%construct vector for keeping track of target blocks coordinates
target_blocks = [];
%construct vector for keeping track of noisy blocks coordinates
noisy_blocks = [];
%move with a 3x3 window with a stride of 1
for i = 2:1:size(noisy_pixels,1)-1
for j = 2:1:size(noisy_pixels,2)-1
noise_counter = 0;
%count the number of noisy pixels
for k = 1:1:size(window,1)
if noisy_pixels(i+window(k,1),...
j+window(k,2)) == 1
noise_counter = noise_counter + 1;
end
end
%if the number of noisy pixels is smaller than a threshold
if noise_counter < uint8(size(window,1) / 2)
%then the window is a matching block
for k = 1:1:size(window, 1)
freqs_matching_blocks(k,...
padded_img(i+window(k,1),...
j+window(k,2))+1) = freqs_matching_blocks(k,...
padded_img(i+window(k,1),...
j+window(k,2))+1) + 1;
matching_blocks(k, padded_img(i+window(k,1),...
j+window(k,2))+1, freqs_matching_blocks(k,...
padded_img(i+window(k,1),...
j+window(k,2))+1)) = get_scalar_from_indexes(i, j, padded_img);
end
end
%here we put an extra condition to check as if we moved
%with a 3x3 window and a stride of 3
if mod(i,3) == 2 && mod(j,3) == 2
%if there is at least 1 noisy pixel
if noise_counter >= 1
%remember the window and its'
%coordinate as a target block
target_blocks = [target_blocks...
get_scalar_from_indexes(i, j, padded_img)];
end
if noise_counter >= uint8(size(window,1)/2)
noisy_blocks = [noisy_blocks...
get_scalar_from_indexes(i, j, padded_img)];
end
end
end
end
%define tolerance bounds to move with through the matching blocks
%array
tolerance_lower = 1;
tolerance_step = 2;
tolerance_upper = 9;
%define thresholds
sufficient_number_of_matching_blocks = 5;
similarity_threshold = 3;
%variable to keep track if target blocks are decreasing
decreasing_target_blocks = 1;
%increase the tolerance if needed
for d = tolerance_lower:tolerance_step:tolerance_upper
%while the target blocks are decreasing
while decreasing_target_blocks == 1
%for every target block
for t = 1:1:size(target_blocks,2)
current_matching_blocks = [];
found_enough_blocks = 0;
%get its' coordinate as indexes
[target_row, target_col] = get_indexes_from_scalar(target_blocks(t), padded_img);
for k = 1:1:size(window, 1)
%if target pixel is not noisy
if noisy_pixels(target_row + window(k,1), target_col + window(k,2)) == 0
%get its' gray value
gray_value = padded_img(target_row + window(k,1), target_col + window(k,2));
%get the tolerance-bound lower limit
lower_limit = gray_value-d+1;
if lower_limit < 1
lower_limit = 1;
end
%get the tolerance-bound upper limit
upper_limit = gray_value+d+1;
if upper_limit > gray_levels
upper_limit = gray_levels;
end
%get all matching blocks that have the same
%gray level that appears in the tolerance-bound
%interval
temp_list = matching_blocks(k, lower_limit:upper_limit, :);
%for every possible matching block candidate
for i = 1:1:size(temp_list, 2)
for j = 1:1:size(temp_list, 3)
if temp_list(1, i, j) ~= 0
[matching_row, matching_col] = get_indexes_from_scalar(temp_list(1,i,j), padded_img);
%check if that matching block is
%similar to the target block
if simil(target_row, target_col, matching_row, matching_col, padded_img, noisy_pixels, d, window) >= similarity_threshold
%if it is, add it to a set
current_matching_blocks = [current_matching_blocks, temp_list(1,i,j)];
end
%if the set reaches a minimum
%length, the search can be stopped
if size(current_matching_blocks, 2) >= sufficient_number_of_matching_blocks
found_enough_blocks = 1;
break
end
end
end
if found_enough_blocks == 1
break
end
end
end
if found_enough_blocks == 1
break
end
end
%if the set reached the minimum length
if found_enough_blocks == 1
%for every pixel in a 3x3 window
for k = 1:1:size(window,1)
%check if the Xi target pixel is noise so it can be
%denoised
if noisy_pixels(target_row + window(k,1), target_col + window(k,2)) == 1
result = 0;
counter = 0;
for idx = 1:1:size(current_matching_blocks, 2)
[matching_row, matching_col] = get_indexes_from_scalar(current_matching_blocks(1,idx), padded_img);
%if the Xi matching pixel is not noise
if noisy_pixels(matching_row + window(k,1), matching_col + window(k,2)) == 0
result = result + padded_img(matching_row + window(k,1), matching_col + window(k,2));
counter = counter + 1;
end
end
%save the mean result of all Xi matching
%pixels that are not noise
result = result / counter;
%denoise the target pixels
if counter > 0
padded_img(target_row + window(k,1), target_col + window(k,2)) = result;
noisy_pixels(target_row + window(k,1), target_col + window(k,2)) = 0;
end
end
end
%check if every target pixel from a certain window
%has been denoised
everything_denoised = 1;
for k = 1:1:size(window,1)
if noisy_pixels(target_row + window(k,1), target_col + window(k,2)) == 1
everything_denoised = 0;
break
end
end
%if every target pixel from a certain window was
%denoised
if everything_denoised == 1
%transform the target block into a matching
%block
for k = 1:1:size(window,1)
freqs_matching_blocks(k, padded_img(target_row+window(k,1),target_col+window(k,2))+1) = freqs_matching_blocks(k, padded_img(target_row+window(k,1),target_col+window(k,2))+1) + 1;
matching_blocks(k, padded_img(target_row + window(k,1), target_col + window(k,2))+1, freqs_matching_blocks(k, padded_img(target_row+window(k,1),target_col+window(k,2))+1)) = target_blocks(t);
end
%remove the target block
target_blocks(t) = [];
decreasing_target_blocks = 1;
break
end
else
%if the number of target blocks is not decreasing
%anymore, the tolerance will be increased to check
%a higher range of gray values in the set of
%matching blocks
decreasing_target_blocks = 0;
end
end
%if there are no more target blocks to denoise
if size(target_blocks,2) == 0
decreasing_target_blocks = 0;
end
end
%denoising of noisy blocks
surrounding = zeros(9, 2, 4);
%get the offsets of every surrounding block
surrounding(:,:,1) = [-2 -2; -2 -1; -2 0; -1 -2; -1 -1; -1 0; 0 -2; 0 -1; 0 0];
surrounding(:,:,2) = [-2 0; -2 1; -2 2; -1 0; -1 1; -1 2; 0 0; 0 1; 0 2];
surrounding(:,:,3) = [0 -2; 0 -1; 0 0; 1 -2; 1 -1; 1 0; 2 -2; 2 -1; 2 0];
surrounding(:,:,4) = [0 0; 0 1; 0 2; 1 0; 1 1; 1 2; 2 0; 2 1; 2 2];
for t = 1:1:size(noisy_blocks,2)
[noisy_row, noisy_col] = get_indexes_from_scalar(noisy_blocks(t), padded_img);
for k = 1:1:size(surrounding,3)
min_row = min(surrounding(:,1,k));
min_col = min(surrounding(:,2,k));
max_row = max(surrounding(:,1,k));
max_col = max(surrounding(:,2,k));
if noisy_row + min_row < 2 || noisy_row + max_row > size(padded_img, 1) - 1 || noisy_col + min_col < 2 || noisy_col + max_col > size(padded_img, 2) - 1
continue
end
noisy_counter = 0;
for idx = 1:1:size(surrounding(:,:,k), 1)
if noisy_pixels(noisy_row + surrounding(idx, 1, k), noisy_col + surrounding(idx, 2, k)) == 1
noisy_counter = noisy_counter + 1;
end
end
%if a surrounding block doesn't have enough noisy pixels
if noisy_counter < 5
offset_i = -1;
offset_j = -1;
if k == 1
offset_i = -1;
offset_j = -1;
elseif k == 2
offset_i = -1;
offset_j = 1;
elseif k == 3
offset_i = 1;
offset_j = -1;
elseif k == 4
offset_i = 1;
offset_j = 1;
end
%turn it into a target block to be denoised later
target_blocks = [target_blocks get_scalar_from_indexes(i + offset_i, j + offset_j, padded_img)];
end
end
end
end
%save the filtered image channel and remove the padding
J(:,:,image_channel) = padded_img(2:size(padded_img,1)-1, 2:size(padded_img,2)-1);
end
end
function [row, col] = get_indexes_from_scalar(scalar, fitting_array)
row = ceil(scalar / size(fitting_array, 2));
col = mod(scalar, size(fitting_array, 2));
end
function scalar = get_scalar_from_indexes(row, col, fitting_array)
scalar = (row-1)*size(fitting_array, 2) + col;
end
function result = simil(T_row, T_col, M_row, M_col, padded_img,...
noisy_pixels, tolerance, window)
%similarity output result
result = 0;
for i = 1:1:size(window,1)
prod = 1;
%check if pixel in target block window is noise
if noisy_pixels(T_row + window(i,1),...
T_col + window(i,2)) == 1
prod = 0;
end
%check if pixel in matching block window is noise
if prod == 1
if noisy_pixels(M_row + window(i,1),...
M_col + window(i,2)) == 1
prod = 0;
end
end
%check if pixels in matching and target blocks are not noise
%and if their absolute difference is smaller than a pre-set
%tolerance
if prod == 1
if ~(noisy_pixels(M_row + window(i,1),...
M_col + window(i,2)) == 0 &&...
noisy_pixels(T_row + window(i,1),...
T_col + window(i,2)) == 0 &&...
abs(padded_img( M_row + window(i,1),...
M_col + window(i,2) )...
- padded_img(T_row + window(i,1),...
T_col + window(i,2) )) <= tolerance)
prod = 0;
end
end
result = result + prod;
end
end