-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
43 lines (37 loc) · 1.76 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import os
import tensorflow as tf
from op import *
def gen_flow(X, dim = 16):
'''
:param X: input video of size [batch_size, seqlen, h, w, c]
:return: voxel flow F [batch_size, h, w, 3]
'''
[batch_size, seqlen, h, w, c] = X.get_shape().as_list()
X = tf.transpose(X, (0, 2, 3, 1, 4))
X = tf.reshape(X, [batch_size, h, w, seqlen * c])
encoder1 = conv2d(X, dim, k_h=1, k_w=1, d_h=1, d_w=1, name='encoder1')
encoder2 = conv2d(relu(encoder1), dim * 2, k_h=5, k_w=5, name='encoder2')
encoder3 = conv2d(relu(encoder2), dim * 4, k_h=5, k_w=5, name='encoder3')
encoder4 = conv2d(relu(encoder3), dim * 4, k_h=3, k_w=3, name='encoder4')
decoder4 = deconv2d(relu(encoder4), dim * 4, k_h=3, k_w=3, d_h=1, d_w=1, name='decoder4')
decoder4 = tf.concat(values=[encoder4, decoder4], axis=-1)
decoder3 = deconv2d(relu(decoder4), dim * 4, k_h=3, k_w=3, name='decoder3')
decoder3 = tf.concat(values=[encoder3, decoder3], axis=-1)
decoder2 = deconv2d(relu(decoder3), dim * 2, k_h=5, k_w=5, name='decoder2')
decoder2 = tf.concat(values=[encoder2, decoder2], axis=-1)
decoder1 = deconv2d(relu(decoder2), dim, k_h=5, k_w=5, name='decoder1')
decoder1 = relu(decoder1)
F = tf.tanh(conv2d(decoder1, 3, k_h=1, k_w=1, d_h=1, d_w=1, name='f'))
F= tf.concat(values=(F[...,0:1], F[...,1:2], (F[..., 2:] + 1.0) / 2.0),axis=-1)
return F
def get_loss(target, gen_img):
"""
:param target: label of size [batch_size, h, w, 3]
:param gen_img: generate image of size [batch_size, h, w, 3]
:return: loss
"""
loss = tf.reduce_mean(tf.abs(target - gen_img))
return loss
def create_optimizers(loss, params, learning_rate):
opt = tf.train.AdamOptimizer(learning_rate).minimize(loss, var_list = params)
return opt