-
Notifications
You must be signed in to change notification settings - Fork 61
/
Copy pathhubconf.py
35 lines (25 loc) · 1.18 KB
/
hubconf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
dependencies = ["torch"]
import torch
import torchvision
R50_URL = "https://www.dropbox.com/s/pxgjxcva7oypf12/backbone_bicaptioning_R_50_L1_H2048.pth?dl=1"
def resnet50(pretrained: bool = False, **kwargs):
r"""
ResNet-50 visual backbone from the best performing VirTex model: pretrained
for bicaptioning on COCO Captions, with textual head ``L = 1, H = 2048``.
This is a torchvision-like model, with the last ``avgpool`` and `fc``
modules replaced with ``nn.Identity()`` modules. Given a batch of image
tensors with size ``(B, 3, 224, 224)``, this model computes spatial image
features of size ``(B, 7, 7, 2048)``, where B = batch size.
pretrained (bool): Whether to load model with pretrained weights.
"""
# Create a torchvision resnet50 with randomly initialized weights.
model = torchvision.models.resnet50(pretrained=False, **kwargs)
# Replace global average pooling and fully connected layers with identity
# modules.
model.avgpool = torch.nn.Identity()
model.fc = torch.nn.Identity()
if pretrained:
model.load_state_dict(
torch.hub.load_state_dict_from_url(R50_URL, progress=False)
)
return model