forked from pipiku915/FinMem-LLM-StockTrading
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
195 lines (187 loc) · 6.35 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import os
import toml
import typer
import logging
import pickle
import warnings
from tqdm import tqdm
from dotenv import load_dotenv
from datetime import datetime
from typing import Union
from puppy import MarketEnvironment, LLMAgent, RunMode
# set up
load_dotenv()
app = typer.Typer(name="puppy")
warnings.filterwarnings("ignore")
@app.command("sim", help="Start Simulation", rich_help_panel="Simulation")
def sim_func(
market_data_info_path: str = typer.Option(
os.path.join("data", "03_model_input", "tsla.pkl"),
"-mdp",
"--market-data-path",
help="The environment data pickle path",
),
start_time: str = typer.Option(
"2022-06-30", "-st", "--start-time", help="The start time"
),
end_time: str = typer.Option(
"2022-10-11", "-et", "--end-time", help="The end time"
),
run_mode: str = typer.Option(
"train", "-rm", "--run-model", help="Run mode: train or test"
),
config_path: str = typer.Option(
os.path.join("config", "config.toml"),
"-cp",
"--config-path",
help="config file path",
),
checkpoint_path: str = typer.Option(
os.path.join("data", "06_train_checkpoint"),
"-ckp",
"--checkpoint-path",
help="The checkpoint path",
),
result_path: str = typer.Option(
os.path.join("data", "05_train_model_output"),
"-rp",
"--result-path",
help="The result save path",
),
trained_agent_path: Union[str, None] = typer.Option(
None,
"-tap",
"--trained-agent-path",
help="Only used in test mode, the path of trained agent",
),
) -> None:
# load config
config = toml.load(config_path)
# set up logging
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
logging_formatter = logging.Formatter(
"%(asctime)s - %(name)s - %(levelname)s - %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
)
file_handler = logging.FileHandler(
os.path.join(
"data",
"04_model_output_log",
f'{config["general"]["trading_symbol"]}_run.log',
),
mode="a",
)
file_handler.setFormatter(logging_formatter)
logger.addHandler(file_handler)
# verify run mode
if run_mode in {"train", "test"}:
run_mode_var = RunMode.Train if run_mode == "train" else RunMode.Test
else:
raise ValueError("Run mode must be train or test")
# create environment
with open(market_data_info_path, "rb") as f:
env_data_pkl = pickle.load(f)
environment = MarketEnvironment(
symbol=config["general"]["trading_symbol"],
env_data_pkl=env_data_pkl,
start_date=datetime.strptime(start_time, "%Y-%m-%d").date(),
end_date=datetime.strptime(end_time, "%Y-%m-%d").date(),
)
if run_mode_var == RunMode.Train:
the_agent = LLMAgent.from_config(config)
else:
the_agent = LLMAgent.load_checkpoint(path=os.path.join(trained_agent_path, "agent_1")) # type: ignore
# start simulation
pbar = tqdm(total=environment.simulation_length)
while True:
logger.info(f"Step {the_agent.counter}")
the_agent.counter += 1
market_info = environment.step()
logger.info(f"Date {market_info[0]}")
logger.info(f"Record {market_info[-2]}")
if market_info[-1]: # if done break
break
the_agent.step(market_info=market_info, run_mode=run_mode_var) # type: ignore
pbar.update(1)
# save checkpoint every time, openai api is not stable
the_agent.save_checkpoint(path=checkpoint_path, force=True)
environment.save_checkpoint(path=checkpoint_path, force=True)
# save result after finish
the_agent.save_checkpoint(path=result_path, force=True)
environment.save_checkpoint(path=result_path, force=True)
@app.command(
"sim-checkpoint",
help="Start Simulation from checkpoint",
rich_help_panel="Simulation",
)
def sim_checkpoint(
checkpoint_path: str = typer.Option(
os.path.join("data", "06_train_checkpoint"),
"-ckp",
"--checkpoint-path",
help="The checkpoint path",
),
result_path: str = typer.Option(
os.path.join("data", "05_train_model_output"),
"-rp",
"--result-path",
help="The result save path",
),
config_path: str = typer.Option(
os.path.join("config", "tsla_config.toml"),
"-cp",
"--config-path",
help="config file path",
),
run_mode: str = typer.Option(
"train", "-rm", "--run-model", help="Run mode: train or test"
),
) -> None:
# load config
config = toml.load(config_path)
# set up logging
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
logging_formatter = logging.Formatter(
"%(asctime)s - %(name)s - %(levelname)s - %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
)
file_handler = logging.FileHandler(
os.path.join(
"data",
"04_model_output_log",
f'{config["general"]["trading_symbol"]}_run.log',
),
mode="a",
)
file_handler.setFormatter(logging_formatter)
logger.addHandler(file_handler)
# verify run mode
if run_mode in {"train", "test"}:
run_mode_var = RunMode.Train if run_mode == "train" else RunMode.Test
else:
raise ValueError("Run mode must be train or test")
# load env & agent from checkpoint
environment = MarketEnvironment.load_checkpoint(
path=os.path.join(checkpoint_path, "env")
)
the_agent = LLMAgent.load_checkpoint(path=os.path.join(checkpoint_path, "agent_1"))
pbar = tqdm(total=environment.simulation_length)
# run simulation
while True:
logger.info(f"Step {the_agent.counter}")
the_agent.counter += 1
market_info = environment.step()
if market_info[-1]:
break
the_agent.step(market_info=market_info, run_mode=run_mode_var) # type: ignore
pbar.update(1)
# save checkpoint every time, openai api is not stable
the_agent.save_checkpoint(path=checkpoint_path, force=True)
environment.save_checkpoint(path=checkpoint_path, force=True)
# save result after finish
the_agent.save_checkpoint(path=result_path, force=True)
environment.save_checkpoint(path=result_path, force=True)
if __name__ == "__main__":
app()