-
Notifications
You must be signed in to change notification settings - Fork 2
/
gm_main_100k.py
153 lines (132 loc) · 6.35 KB
/
gm_main_100k.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
from argparse import ArgumentParser
parser = ArgumentParser(description='Input parameters for Generative Meta-Learning Optimizer')
parser.add_argument('--noise', default=16, type=int, help='Number of Noise Variables for Gen-Meta')
parser.add_argument('--cnndim', default=2, type=int, help='Size of Latent Dimensions for Gen-Meta')
parser.add_argument('--funcd', default=100000, type=int, help='Size of Benchmark Function Dimensions')
parser.add_argument('--iter', default=150, type=int, help='Number of Total Iterations for Solver')
parser.add_argument('--batch', default=500, type=int, help='Number of Evaluations in an Iteration')
parser.add_argument('--rseed', default=2, type=int, help='Random Seed for Network Initialization')
# hyperparameters for GradInit
parser.add_argument('--gradinit_eta', default=1e-3, type=float, help='The target learning rate')
parser.add_argument('--gradinit_lr', default=1e-2, type=float, help='Step size of GradInit')
parser.add_argument('--gradinit_iters', default=50, type=int, help='Number of GradInit steps.')
parser.add_argument('--gradinit_min_scale', default=1e-2, type=float, help='Set a lower bound for the scale factors')
args = parser.parse_args()
import torch, time
import torch.nn as nn
from gm_utils import *
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def rastrigin(x, A=10):
x = x.tanh() * 5
return (x**2 - A * (2 * math.pi * x).cos()).sum(dim=1) + A * x.shape[1]
def ackley(x, A=20):
x = x.tanh() * 5
x1 = -A * (-0.2 * (x.pow(2).mean(dim=1)).sqrt()).exp()
x2 = (2 * math.pi * x).cos().mean(dim=1).exp()
return x1 - x2 + A + 2.71828174591064453125
# global minima: -39.16599 * x.shape[1]
def styblinski(x):
x = x.tanh() * 5
return (x.pow(4) - 16 * x.pow(2) + 5 * x).sum(dim=1) / 2
def alpine(x):
x = x.tanh() * 10
return (x * x.sin() + x / 10).sum(dim=1).abs()
options = {
"rastrigin": rastrigin,
"ackley": ackley,
"styblinski": styblinski,
"alpine": alpine}
user_input = ''
while user_input.lower() not in options:
user_input = input("Select a function to optimize in 100K-dim: ackley, alpine, styblinski, rastrigin\n")
reward_func = options[user_input.lower()]
def init_weights(model):
for m in model.modules():
if isinstance(m, nn.BatchNorm1d):
m.weight.data.fill_(1)
elif isinstance(m, nn.Linear):
nn.init.xavier_uniform_(m.weight, gain = 5/3)
if hasattr(m, 'bias') and m.bias is not None: m.bias.data.zero_()
class Logish(nn.Module):
def __init__(self):
super().__init__()
def forward(self, x):
return x * (1 + x.sigmoid()).log()
class LSTMModule(nn.Module):
def __init__(self, input_size = 1, hidden_size = 1, num_layers = 2):
super(LSTMModule, self).__init__()
self.rnn = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True)
self.h = torch.zeros(num_layers, 1, hidden_size, requires_grad=True).cuda()
self.c = torch.zeros(num_layers, 1, hidden_size, requires_grad=True).cuda()
def forward(self, x):
self.rnn.flatten_parameters()
out, (h_end, c_end) = self.rnn(x, (self.h, self.c))
self.h.data = h_end.data
self.c.data = c_end.data
return out[:,-1, :].flatten()
class Extractor(nn.Module):
def __init__(self, latent_dim, ks = 5):
super(Extractor, self).__init__()
self.conv = nn.Conv1d(args.noise, latent_dim,
bias = False, kernel_size = ks, padding = (ks // 2) + 1)
self.conv.weight.data.normal_(0, 0.01)
self.activation = nn.Sequential(nn.BatchNorm1d(
latent_dim, track_running_stats = False), Logish())
self.gap = nn.AvgPool1d(kernel_size = args.batch, padding = 1)
self.rnn = LSTMModule(hidden_size = latent_dim)
def forward(self, x):
y = x.unsqueeze(0).permute(0, 2, 1)
y = self.rnn(self.gap(self.activation(self.conv(y))))
return torch.cat([x, y.repeat(args.batch, 1)], dim = 1)
class Generator(nn.Module):
def __init__(self, noise_dim = 0):
super(Generator, self).__init__()
def block(in_feat, out_feat):
return [nn.Linear(in_feat, out_feat), nn.Tanh()]
self.model = nn.Sequential(
*block(noise_dim+args.cnndim, 480), *block(480, 1103), nn.Linear(1103, args.funcd))
init_weights(self)
self.extract = Extractor(args.cnndim)
self.std_weight = nn.Parameter(torch.zeros(args.funcd).cuda())
def forward(self, x):
mu = self.model(self.extract(x))
return mu + (self.std_weight * torch.randn_like(mu))
torch.manual_seed(args.rseed)
torch.cuda.manual_seed(args.rseed)
actor = Generator(args.noise).cuda()
opt_A = torch.optim.AdamW(filter(lambda p: p.requires_grad, actor.parameters()), lr=1e-3)
best_reward = None
def gradinit(net, args):
bias_params = [p for n, p in net.named_parameters() if 'bias' in n]
weight_params = [p for n, p in net.named_parameters() if 'weight' in n]
optimizer = RescaleAdam([{'params': weight_params, 'min_scale': args.gradinit_min_scale, 'lr': args.gradinit_lr},
{'params': bias_params, 'min_scale': 0, 'lr': args.gradinit_lr}], grad_clip=1.)
params_list = get_ordered_params(net)
for total_iters in range(args.gradinit_iters):
init_inputs = torch.randn((args.batch, args.noise)).cuda().requires_grad_()
rewards = reward_func(net(init_inputs))
init_loss = rewards.mean()
all_grads = torch.autograd.grad(init_loss, params_list, create_graph=True)
gnorm = sum([g.abs().sum() for g in all_grads])
optimizer.zero_grad()
gnorm.backward()
optimizer.step()
start = time.time()
with torch.backends.cudnn.flags(enabled=False):
gradinit(actor, args)
for epoch in range(args.iter):
torch.cuda.empty_cache()
opt_A.zero_grad()
z = torch.randn((args.batch, args.noise)).cuda().requires_grad_()
rewards = reward_func(actor(z))
min_index = rewards.argmin()
if best_reward is None: best_reward = rewards[min_index]
actor_loss = rewards.mean()
actor_loss.backward()
nn.utils.clip_grad_norm_(actor.parameters(), 1.0)
opt_A.step()
with torch.no_grad():
if rewards[min_index] > best_reward: continue
best_reward = rewards[min_index]
print('gen-meta trial: %i loss: %f time: %f' % (args.batch*(args.gradinit_iters+epoch), best_reward.item(), (time.time() - start)))