-
Notifications
You must be signed in to change notification settings - Fork 0
/
nnCostFunction.m
128 lines (101 loc) · 5.09 KB
/
nnCostFunction.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
function [J grad] = nnCostFunction(nn_params, ...
input_layer_size, ...
hidden_layer_size, ...
num_labels, ...
X, y, lambda)
%NNCOSTFUNCTION Implements the neural network cost function for a two layer
%neural network which performs classification
% [J grad] = NNCOSTFUNCTON(nn_params, hidden_layer_size, num_labels, ...
% X, y, lambda) computes the cost and gradient of the neural network. The
% parameters for the neural network are "unrolled" into the vector
% nn_params and need to be converted back into the weight matrices.
%
% The returned parameter grad should be a "unrolled" vector of the
% partial derivatives of the neural network.
%
% Reshape nn_params back into the parameters Theta1 and Theta2, the weight matrices
% for our 2 layer neural network
Theta1 = reshape(nn_params(1:hidden_layer_size * (input_layer_size + 1)), ...
hidden_layer_size, (input_layer_size + 1));
Theta2 = reshape(nn_params((1 + (hidden_layer_size * (input_layer_size + 1))):end), ...
num_labels, (hidden_layer_size + 1));
% Setup some useful variables
m = size(X, 1);
% You need to return the following variables correctly
J = 0;
Theta1_grad = zeros(size(Theta1));
Theta2_grad = zeros(size(Theta2));
% ====================== YOUR CODE HERE ======================
% Instructions: You should complete the code by working through the
% following parts.
%
% Part 1: Feedforward the neural network and return the cost in the
% variable J. After implementing Part 1, you can verify that your
% cost function computation is correct by verifying the cost
% computed in ex4.m
%
a1 = [ones(m,1) X]; % dim = [5000*401]
z2 = a1 * Theta1'; % dim = [5000*401]*[25*401]' = [5000*25]
a2 = sigmoid(z2); % dim = [5000*25]
a2 = [ones(m,1) a2]; % dim = [5000*26]
z3 = a2 * Theta2'; % dim = [5000*26] * [10*26]' = [5000*10]
a3 = sigmoid(z3); % dim = 5000 * 10
boolean_matrix = zeros(m ,num_labels);
for i = 1:num_labels
boolean_matrix(:,i) = (y == i);
end
J = (-1/m) * sum(sum(boolean_matrix .* log(a3) + (1-boolean_matrix).* log(1-a3)));
nobias_Theta1 = [zeros(hidden_layer_size,1) Theta1(:,2:end)];
nobias_Theta2 = [zeros(num_labels,1) Theta2(:,2:end)];
nobias_ThetaVec = [nobias_Theta1(:);nobias_Theta2(:)];
J = J + (lambda/(2*m))* (nobias_ThetaVec'*nobias_ThetaVec);
% Part 2: Implement the backpropagation algorithm to compute the gradients
% Theta1_grad and Theta2_grad. You should return the partial derivatives of
% the cost function with respect to Theta1 and Theta2 in Theta1_grad and
% Theta2_grad, respectively. After implementing Part 2, you can check
% that your implementation is correct by running checkNNGradients
%
% Note: The vector y passed into the function is a vector of labels
% containing values from 1..K. You need to map this vector into a
% binary vector of 1's and 0's to be used with the neural network
% cost function.
%
% Hint: We recommend implementing backpropagation using a for-loop
% over the training examples if you are implementing it for the
% first time.
%
% vectorize method(faster than for-loop :D)
delta3 = a3 - boolean_matrix; % dim = [5000*10], each sample per row
delta2 = (delta3 * Theta2(:,2:end)) .* sigmoidGradient(z2); % dim = [5000*10]*[10*26](2:end) ->[5000*25] .* [5000*25] =>[5000*25]
Theta1_grad = delta2' * a1; %dim = [5000*25]'*[5000*401] = [25*401]
Theta2_grad = delta3' * a2; %dim = [5000*10]'*[5000*26] = [10*26]
Theta1_grad = (1/m)*Theta1_grad;
Theta2_grad = (1/m)*Theta2_grad;
% not vectorize method
% for i = 1:m
% a1 = X(i,:); % dim = 1*401
% z2 = a1 * Theta1'; % dim = [1*401] * [25*401]'
% a2 = sigmoid(z2); % dim = [1*25]
% a2 = [ones(1,1) a2]; % dim = [1*26]
% z3 = a2 * Theta2'; % dim = [1*26] * [10*26]'
% a3 = sigmoid(z3); % dim = [1*10]
%
% delta3 = a3 - boolean_matrix(i,:); % dim = [1*10], yk = 0/1
% delta2 = delta3 * Theta2 .* [1 sigmoidGradient(z2)]; % dim = [1*10] * [10*26] .* [1*26] = [1*26]
% Theta1_grad = Theta1_grad + (delta2(2:end)'* a1); % dim = [1*25]' * [1*401]
% Theta2_grad = Theta2_grad + (delta3' * a2); % [1*10]'* [1*26];
% end
% Theta1_grad = 1/m .* Theta1_grad;
% Theta2_grad = 1/m .* Theta2_grad;
% Part 3: Implement regularization with the cost function and gradients.
%
% Hint: You can implement this around the code for
% backpropagation. That is, you can compute the gradients for
% the regularization separately and then add them to Theta1_grad
% and Theta2_grad from Part 2.
% Unroll gradients
grad = [Theta1_grad(:) ; Theta2_grad(:)];
grad = (lambda/m)*nobias_ThetaVec + grad;
% -------------------------------------------------------------
% =========================================================================
end