-
Notifications
You must be signed in to change notification settings - Fork 1
/
exp5-topK-rnn-cmaes.py
396 lines (340 loc) · 12.6 KB
/
exp5-topK-rnn-cmaes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
import argparse
from functools import partial
import math
import multiprocessing as mp
import os
from pathlib import Path
import pickle
from typing import Any, Dict, Tuple
import cma
import gym
import numpy as np
import torch
from torch import nn
from torch.nn.utils import parameters_to_vector, vector_to_parameters
from torchvision import transforms
#
# modules / build blocks for the solution
#
class LSTMController(nn.Module):
def __init__(
self,
input_dim,
num_hidden,
output_dim,
output_activation: str = "tanh"
):
super().__init__()
self._hidden_size = num_hidden
self.lstm = nn.LSTM(
input_size=input_dim,
hidden_size=self._hidden_size,
num_layers=1,
)
self.fc = nn.Linear(self._hidden_size, output_dim)
if output_activation == 'tanh':
self.activation = nn.Tanh()
elif output_activation == 'softmax':
self.activation = nn.Softmax(dim=-1)
else:
raise ValueError("unsupported activation function")
self.reset()
self.eval()
def forward(self, x):
x, self._hidden = self.lstm(x.view(1, 1, -1), self._hidden)
x = self.fc(x)
x = self.activation(x)
return x
def reset(self):
self._hidden = (
torch.zeros((1, 1, self._hidden_size)),
torch.zeros((1, 1, self._hidden_size)),
)
class SelfAttention(nn.Module):
def __init__(self, data_dim, dim_q):
super().__init__()
self.fc_q = nn.Linear(data_dim, dim_q)
self.fc_k = nn.Linear(data_dim, dim_q)
self.eval()
def forward(self, X):
_, _, K = X.size()
queries = self.fc_q(X) # (B, T, Q)
keys = self.fc_k(X) # (B, T, Q)
dot = torch.bmm(queries, keys.transpose(1, 2)) # (B, T, T)
scaled = torch.div(dot, math.sqrt(K))
return scaled
class CarRacingAgent(nn.Module):
"""CarRacing agents described in 'Neuroevolution of Self-Interpretable Agents'
https://arxiv.org/pdf/2003.08165v2.pdf
Implementation is based on the original code here:
https://github.com/google/brain-tokyo-workshop
"""
def __init__(
self,
image_size,
query_dim,
output_dim,
output_activation,
num_hidden,
patch_size,
patch_stride,
top_k,
data_dim,
normalize_positions: bool = True,
):
super().__init__()
self._image_size = image_size
self._patch_size = patch_size
self._patch_stride = patch_stride
self._top_k = top_k
self._normalize_positions = normalize_positions
self._transform = transforms.Compose([
transforms.ToPILImage(),
transforms.Resize((image_size, image_size)),
transforms.ToTensor(),
])
n = int((image_size - patch_size) / patch_stride + 1)
offset = self._patch_size // 2
patch_centers = []
for i in range(n):
patch_center_row = offset + i * patch_stride
for j in range(n):
patch_center_col = offset + j * patch_stride
patch_centers.append([patch_center_row, patch_center_col])
self._patch_centers = torch.tensor(patch_centers).float()
self.attention = SelfAttention(
data_dim=data_dim * self._patch_size ** 2,
dim_q=query_dim,
)
self.controller = LSTMController(
input_dim=self._top_k * 2,
output_dim=output_dim,
num_hidden=num_hidden,
output_activation=output_activation,
)
self.eval()
def forward(self, x):
x = x.permute(1, 2, 0)
_, _, C = x.size()
patches = x.unfold(0, self._patch_size, self._patch_stride).permute(0, 3, 1, 2)
patches = patches.unfold(2, self._patch_size, self._patch_stride).permute(0, 2, 1, 4, 3)
patches = patches.reshape((-1, self._patch_size, self._patch_size, C))
flattened_patches = patches.reshape((1, -1, C * self._patch_size ** 2))
attention_matrix = self.attention(flattened_patches)
patch_importance_matrix = torch.softmax(attention_matrix.squeeze(), dim=-1)
patch_importance = patch_importance_matrix.sum(dim=0)
ix = torch.argsort(patch_importance, descending=True)
top_k_ix = ix[:self._top_k]
centers = self._patch_centers[top_k_ix].flatten(0, -1)
if self._normalize_positions:
centers = centers / self._image_size
return centers
def step(self, obs):
with torch.no_grad():
x = self._transform(obs)
centers = self.forward(x)
return centers, None
def reset(self):
self.controller.reset()
class Exp5Agent(nn.Module):
def __init__(
self,
output_dim,
num_hidden,
top_k,
nonlinearity: str = "relu"
):
super().__init__()
self._hidden_size = num_hidden
self.rnn = nn.RNN(
input_size=top_k * 2,
hidden_size=num_hidden,
nonlinearity=nonlinearity,
)
self.fc = nn.Linear(self._hidden_size, output_dim)
self.activation = nn.Tanh()
def forward(self, x):
x, self._hidden = self.rnn(x.view(1, 1, -1), self._hidden)
x = self.fc(x)
x = self.activation(x)
return x.squeeze()
def step(self, obs):
with torch.no_grad():
actions = self.forward(obs).numpy()
return actions, None
def reset(self):
self._hidden = torch.zeros((1, 1, self._hidden_size))
class CarRacingWrapper(gym.Wrapper):
def __init__(self, env, base_agent, steps_cap=0, neg_reward_cap=0):
super().__init__(env)
self.env = env
self.steps_cap = steps_cap
self.neg_reward_cap = neg_reward_cap
self.action_range = (env.action_space.high - env.action_space.low) / 2.
self.action_mean = (env.action_space.high + env.action_space.low) / 2.
self.neg_reward_seq = 0
self.steps_count = 0
self.base_agent = base_agent
def reset(self):
self.base_agent.reset()
obs, flag = self.env.reset()
obs = self.overwrite_obs(obs)
self.neg_reward_seq = 0
self.steps_count = 0
return obs, flag
def overwrite_obs(self, obs):
centers, _ = self.base_agent.step(obs)
return centers
def overwrite_terminate_flag(self, reward):
if self.neg_reward_cap == 0:
# no need to terminate early
return False
self.neg_reward_seq = 0 if reward >= 0 else self.neg_reward_seq + 1
out_of_tracks = 0 < self.neg_reward_cap < self.neg_reward_seq
overtime = 0 < self.steps_cap <= self.steps_count
return out_of_tracks or overtime
def step(self, action):
self.steps_count += 1
action = action * self.action_range + self.action_mean
obs, reward, done, timeout, info = self.env.step(action)
obs = self.overwrite_obs(obs)
done = done or self.overwrite_terminate_flag(reward)
return obs, reward, done, timeout, info
#
# ES training loop (strategy, init params, loop, eval, checkpoints)
#
def rollout(env, agent) -> Tuple[float, Dict[str, Any]]:
total_reward, done, steps = 0, False, 0
obs, _ = env.reset()
agent.reset()
while not done:
action, _ = agent.step(obs)
obs, reward, done, _, _ = env.step(action)
steps += 1
total_reward += reward
return total_reward, {"steps": steps}
def make_env(base_agent_params, evaluate: bool = False, render: bool = False):
render_mode = "human" if render else None
env = gym.make("CarRacing-v2", verbose=False, render_mode=render_mode)
kwargs = dict(neg_reward_cap=20, steps_cap=1000) if not evaluate else {}
base_agent = make_base_agent(base_agent_params)
env = CarRacingWrapper(env, base_agent, **kwargs)
return env
def make_base_agent(base_agent_params):
agent = CarRacingAgent(
image_size=96,
query_dim=4,
output_dim=3,
output_activation="tanh",
num_hidden=16,
patch_size=7,
patch_stride=4,
top_k=10,
data_dim=3,
normalize_positions=True,
)
vector_to_parameters(torch.Tensor(base_agent_params), agent.parameters())
return agent
def make_agent(params=None):
agent = Exp5Agent(
output_dim=3,
num_hidden=16,
top_k=10,
)
if params is not None:
vector_to_parameters(torch.Tensor(params), agent.parameters())
return agent
#
# CMA-ES helpers (generic)
#
# XXX: save all models based on the iteration?
def save_checkpoint(folder, es, best_solution):
os.makedirs(folder, exist_ok=True)
with open(f"{folder}/best.pkl", "wb") as f:
pickle.dump({"es": es, "best": best_solution}, f)
def load_checkpoint(path):
with open(path, "rb") as f:
data = pickle.load(f)
return data["es"], data["best"]
def get_fitness(
base_agent_params: np.ndarray,
n_samples: int,
params: Tuple[int, np.ndarray],
verbose: bool = False
) -> Tuple[np.ndarray, float]:
idx, params = params
env = make_env(base_agent_params)
agent = make_agent(params)
rewards = np.array([rollout(env, agent)[0] for _ in range(n_samples)])
avg_reward = rewards.mean()
if verbose:
print(f"Fitness min/mean/max [run #{idx:03d}]: {rewards.min():.2f}/{avg_reward:.2f}/{rewards.max():.2f}")
return params, -avg_reward
def evaluate(base_agent_params, params, render: bool = False) -> float:
env = make_env(base_agent_params, evaluate=True, render=render) # no need for early termination when evaluating
agent = make_agent(params)
reward, _ = rollout(env, agent)
return reward
# NOTE: multiprocessing module uses pickle that fails when dealing
# with lambdas (globally visible function is required)
def evaluate_cb(base_agent_params, params, _idx: int, verbose: bool = True) -> float:
reward = evaluate(base_agent_params, params)
if verbose:
print(f"Evaluation reward: {reward}")
return reward
def train(args):
with np.load(args.base_from_pretrained) as data:
base_agent_params = data['params'].flatten()
if args.resume:
es, best_ever = load_checkpoint(args.resume)
else:
init_agent = make_agent()
print(init_agent)
init_params = parameters_to_vector(init_agent.parameters()).detach().numpy()
es = cma.CMAEvolutionStrategy(
init_params,
args.init_sigma,
{"popsize": args.population_size, "seed": args.seed, "maxiter": args.max_iter}
)
best_ever = cma.optimization_tools.BestSolution()
if not args.num_workers:
args.num_workers = mp.cpu_count() - 1
current_step = 0
with mp.Pool(processes=args.num_workers) as pool:
while not es.stop():
current_step += 1
solutions = es.ask()
fitness = list(pool.imap_unordered(
partial(get_fitness, base_agent_params, args.num_rollouts, verbose=args.verbose),
enumerate(solutions)
))
es.tell(*zip(*fitness))
es.disp()
best_ever.update(es.best)
save_checkpoint(args.logs_dir, es, best_ever)
if 0 == current_step % args.eval_every:
fitness = pool.map(
partial(evaluate_cb, base_agent_params, es.result.xfavorite, verbose=args.verbose),
range(args.num_eval_rollouts)
)
print(f"Evaluation: step={current_step} fitness={np.mean(fitness)}")
es.result_pretty()
def parse_args():
parser = argparse.ArgumentParser("RL agent training with ES")
parser.add_argument("--seed", type=int, default=1143)
parser.add_argument("--resume", type=str, default=None)
parser.add_argument("--num-workers", type=int, default=None)
parser.add_argument("--population-size", type=int, default=256)
parser.add_argument("--init-sigma", type=float, default=0.1)
parser.add_argument("--max-iter", type=int, default=2000)
parser.add_argument("--num-rollouts", type=int, default=16)
parser.add_argument("--eval-every", type=int, default=10)
parser.add_argument("--num-eval-rollouts", type=int, default=64)
parser.add_argument("--logs-dir", type=str, default="es_logs/exp5_topK_rnn_cmaes_v0")
parser.add_argument("--from-pretrained", type=Path, default=None)
parser.add_argument("--base-from-pretrained", type=Path)
parser.add_argument("--verbose", action=argparse.BooleanOptionalAction, default=True)
return parser.parse_args()
if __name__ == "__main__":
args = parse_args()
train(args)