-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.R
351 lines (299 loc) · 13.8 KB
/
app.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
#
# This is a Shiny web application. You can run the application by clicking
# the 'Run App' button above.
#
# Find out more about building applications with Shiny here:
#
# http://shiny.rstudio.com/
#
library(shiny)
library(RSQLite)
library( leaflet )
library( shinydashboard )
library(sp) # for spatial objects
library(dplyr) # for working with data frames
library(ggplot2)
library(tidyr)
library(stringr)
library("maps")
library('sf')
setwd('C:/Users/Wei Jia/Documents/BE8093/project/covid_19/')
db <- dbConnect(RSQLite::SQLite(), dbname = "covid_19.db")
# Define UI for application that draws a histogram
vac_lab = c("Total Cases" = "tot_cases",
"Total Death" = "tot_death",
"Total Fully Vaccinated" = "total_vac",
"New Cases by Month" = "new_case",
"New Death by Month" = "new_death"
)
ui <- fluidPage(
titlePanel("Covid-19 App"),
tabsetPanel(
tabPanel('Cases and Death',
sidebarLayout(
sidebarPanel(
helpText("Observe Covid-19 Cases and Death by States."),
selectInput("var",
label = "Choose a variable to display",
choices = c('Cases' ,'Death'),
selected = 'Cases'),
sliderInput("range",
label = "Time Range of interest:",
min = as.Date(toString(dbGetQuery(conn=db, statement = 'select min(submission_date) from Cases'))),
max = as.Date(toString(dbGetQuery(conn=db, statement = 'select max(submission_date) from Cases'))),
value = c(as.Date(toString(dbGetQuery(conn=db, statement = 'select min(submission_date) from Cases'))),
as.Date(toString(dbGetQuery(conn=db, statement = 'select max(submission_date) from Cases')))))
),
mainPanel(leaflet::leafletOutput( outputId = "myMap"
, height = 500)
)
)
),
tabPanel('Vaccination',
sidebarLayout(
sidebarPanel(
helpText("Vaccinations informations by states."),
sliderInput("range2",
label = "Range of interest:",
min = as.Date(toString(dbGetQuery(conn=db, statement = 'select min(date) from Vaccination'))),
max = as.Date(toString(dbGetQuery(conn=db, statement = 'select max(date) from Vaccination'))),
value = c(
as.Date(toString(dbGetQuery(conn=db, statement = 'select max(date) from Vaccination')))))
),
mainPanel(leaflet::leafletOutput( outputId = "myMap_vac"
, height = 500),
helpText("Note: Lack Data for Texas.")
)
)
),
tabPanel('Plot',
sidebarLayout(
sidebarPanel(
selectInput('select', 'Select State:',
as.list(dbGetQuery(conn=db, statement = 'select distinct state from Cases order by state'))
),
checkboxGroupInput('opt', 'Select plot options:',
vac_lab)
)
,
mainPanel(plotOutput('myplot')
)
)
),
tabPanel('Test',
sidebarLayout(
sidebarPanel(
helpText('A Wilcox test has been performed againest vaccinated group and unvaccinated group.'),
selectInput('select_test',
label = "Select data to perform a test:",
choices = c('Case', 'Death'),
selected = "Case"
)
),
mainPanel(verbatimTextOutput('test'))
)
),
tabPanel('Rates of Covid-19 Outcomes',
sidebarLayout(
sidebarPanel(
selectInput("var_type",
label = "Choose a variable to display",
choices = c('Overall' ,'Age Group'),
selected = 'Overall'),
selectInput("var_rate",
label = "Choose a variable to display",
choices = c('Cases' ,'Death'),
selected = 'Cases')
),
mainPanel(plotOutput('rate_plot')
)
)
)
)
)
# Define server logic required to draw a histogram
server <- function(input, output) {
# create foundational map
foundational.map <- reactive({
cases_data = dbGetQuery(conn=db, statement = paste("select a.state, a.tot_cases-b.tot_cases as cases,
lower(c.name) as ID,
c.population, (a.tot_cases-b.tot_cases)/c.population as pop from (
select state, tot_cases from Cases
where submission_date =",input$range[2],
") a
join (
select state, tot_cases from Cases
where submission_date = ",input$range[1],
") b on a.state=b.state
join geo_states c on a.state = c.abv
order by c.name ", sep="'"))
death_data = dbGetQuery(conn=db, statement = paste("select a.state, a.tot_death-b.tot_death as cases,
lower(c.name) as ID,
c.population, (a.tot_death-b.tot_death)/c.population as pop from (
select state, tot_death from Cases
where submission_date =",input$range[2],
") a
join (
select state, tot_death from Cases
where submission_date = ",input$range[1],
") b on a.state=b.state
join geo_states c on a.state = c.abv
order by c.name ", sep="'"))
vac_data = dbGetQuery(conn=db, statement = paste("select lower(b.name) as ID, sum(a.Series_Complete_Yes) as vac, b.population, round(100*cast(sum(a.Series_Complete_Yes) as float)/cast(b.population as float), 4) as cases from Vaccination a
join geo_states b on a.Recip_State = b.abv
where date = ", input$range[2],
"group by Recip_State", sep="'")
)
data_ = switch(input$var,
'Cases'=cases_data,
'Death'=death_data,
'Vaccinations'=vac_data)
states <- st_as_sf(map("state", plot = FALSE, fill = TRUE))
states <- inner_join(states, data_, by = c('ID'))
popup <- paste0(str_to_title(states$ID), ":<br>", "Confirmed cases: ", cases_data$cases, "<br>", "Confirmed death: ",
death_data$cases, "<br>", "Fully vaccinated:", vac_data$vac)
pal <- switch(input$var,
'Cases' = colorNumeric(
palette = "YlOrRd",
domain = states$cases
),
'Death'=colorNumeric(
palette = "Blues",
domain = states$cases
),
'Vaccinations'=colorNumeric(
palette = "Greens",
domain = states$cases
)
)
leaflet() %>%
addTiles( urlTemplate = "https://cartodb-basemaps-{s}.global.ssl.fastly.net/light_all/{z}/{x}/{y}.png") %>%
setView( lng = -95.7129
, lat = 37.0902
, zoom = 4 ) %>%
addPolygons( data = states,
fillColor = ~pal(cases),
color = "#b2aeae", # you need to use hex colors
fillOpacity = 0.7,
weight = 0.8,
smoothFactor = 0.2,
popup = popup
)
})
output$myMap <- renderLeaflet({
foundational.map()
}) # end of leaflet::renderLeaflet({})
# create foundational map
foundational_map_vac <- reactive({
vac_data = dbGetQuery(conn=db, statement = paste("select lower(b.name) as ID, cast(sum(a.Series_Complete_Yes) as float) as vac, b.population, round(100*cast(sum(a.Series_Complete_Yes) as float)/cast(b.population as float), 4) as cases from Vaccination a
join geo_states b on a.Recip_State = b.abv
where date = ", input$range2,
"group by Recip_State", sep="'")
)
data_ = vac_data
states <- st_as_sf(map("state", plot = FALSE, fill = TRUE))
states <- inner_join(states, data_, by = c('ID'))
popup <- paste0(states$ID, ":<br>", "fully vaccinated: ", states$vac)
pal =colorBin(
palette = "Greens",
domain = states$cases,
# reverse = TRUE,
pretty = TRUE
)
leaflet() %>%
addTiles( urlTemplate = "https://cartodb-basemaps-{s}.global.ssl.fastly.net/light_all/{z}/{x}/{y}.png") %>%
setView( lng = -95.7129
, lat = 37.0902
, zoom = 4 ) %>%
addPolygons( data = states,
fillColor = ~pal(cases),
color = "#b2aeae", # you need to use hex colors
fillOpacity = 0.7,
weight = 0.8,
smoothFactor = 0.5,
popup = popup
)
})
output$myMap_vac <- renderLeaflet({
foundational_map_vac()
}) # en
data_plot = dbGetQuery(conn=db, statement = "select a.state, strftime('%Y-%m', a.submission_date) as Month, sum(a.new_case) as new_case, sum(a.new_death) as new_death, b.total_vac, f.tot_cases, f.tot_death, b.population from Cases a
left join(
select a.state, a.Month, sum(b.Series_Complete_Yes) as total_vac, c.population from(
SELECT recip_state as state, max(date) as max_date, strftime('%Y-%m', Date) as Month from Vaccination a
where Month is NOT NULL
group by recip_state, Month
) a
join vaccination b on a.state=b.recip_state and a.max_date = b.date
left join geo_states c on a.state = c.abv
group by a.state,a.Month
) b on a.state = b.state and strftime('%Y-%m', a.submission_date) = b.month
join (
select b.state, b.month, c.tot_cases, c.tot_death from cases c
join (
select a.state, strftime('%Y-%m', a.submission_date) as Month, max(a.submission_date) as max_date from Cases a
where strftime('%Y-%m', a.submission_date) is not null
group by a.state, strftime('%Y-%m', a.submission_date)
) b on c.submission_date = b.max_date and c.state = b.state
order by b.state, b.month
) f on a.state = f.state and strftime('%Y-%m', a.submission_date) = f.month
where strftime('%Y-%m', submission_date) is not null
group by a.state, strftime('%Y-%m', submission_date)")
data_st = reactive({data_plot[which(data_plot$state==input$select), c('state', 'Month',input$opt)]})
data_st_long = reactive({gather_(data_st(), 'option', 'value', input$opt)})
output$myplot = renderPlot({
if(is.null(data_st_long()$Month)){
ggplot()
}else{
ggplot(data = data_st_long(), aes(x=Month,y=value, colour=option, group=option)) + geom_point() + geom_line() + scale_color_hue(label=names(vac_lab[which(vac_lab %in% input$opt)]))
}
})
plot_data1 = dbGetQuery(conn=db, statement = "select * from plot_data
where Month = '2021-10' and population is not NULL and vac_pop != 0 and vac_pop>0.5")
plot_data2 = dbGetQuery(conn=db, statement = "select * from plot_data
where Month = '2021-10' and population is not NULL and vac_pop != 0 and vac_pop<=0.5")
test_func = reactive({
if(input$select_test=='Case'){
t = wilcox.test(plot_data1$cases_pop,plot_data2$cases_pop, alternative='less')
}
else{
t= wilcox.test(plot_data1$death_pop,plot_data2$death_pop, alternative='less')
}
return(t)
})
output$test = renderPrint({test_func()})
rate_plot = reactive({
if(input$var_type=='Overall'){
case_rate = dbGetQuery(conn=db, statement = "select month, MMWRweek, Weekdate, Vaccinatedwithoutcome, Unvaccinatedwithoutcome from Rates
where Agegroup = 'all_ages_adj' and Vaccineproduct = 'all_types' and outcome = 'case'")
death_rate = dbGetQuery(conn=db, statement = "select month, MMWRweek, Weekdate, Vaccinatedwithoutcome, Unvaccinatedwithoutcome from Rates
where Agegroup = 'all_ages_adj' and Vaccineproduct = 'all_types' and outcome = 'death'")
data_ = switch(input$var_rate,
'Cases'=case_rate,
'Death'=death_rate
)
data_long = gather_(data_, 'option', 'value', c('Vaccinatedwithoutcome', 'Unvaccinatedwithoutcome'))
ggplot(data = data_long) + geom_line(aes(x=MMWRweek, y=value, colour=option), size=1) +
scale_x_continuous(breaks=c(20, 30 , 40),labels=c('May-22', 'JUL-31', 'SEP-30')) +
labs(y='Number of Outcomes', colour='Vaccination statue')
}else if(input$var_type=='Age Group'){
case_rate = dbGetQuery(conn=db, statement = "select month, MMWRweek, Weekdate, Agegroup, Vaccinatedwithoutcome, Unvaccinatedwithoutcome from Rates
where Agegroup != 'all_ages_adj' and Vaccineproduct = 'all_types' and outcome = 'case'")
death_rate = dbGetQuery(conn=db, statement = "select month, MMWRweek, Weekdate, Agegroup, Vaccinatedwithoutcome, Unvaccinatedwithoutcome from Rates
where Agegroup != 'all_ages_adj' and Vaccineproduct = 'all_types' and outcome = 'death'")
data_ = switch(input$var_rate,
'Cases'=case_rate,
'Death'=death_rate
)
data_long = gather_(data_, 'option', 'value', c('Vaccinatedwithoutcome', 'Unvaccinatedwithoutcome'))
ggplot(data = data_long) + geom_line(aes(x=MMWRweek, y=value, colour=option, linetype=Agegroup), size=1) +
labs(linetyple='Age Group', colour='Vaccinated statue', y = 'Number of Outcomes') +
scale_x_continuous(breaks=c(20, 30 , 40),labels=c('May-22', 'JUL-31', 'SEP-30'))
}
})
output$rate_plot = renderPlot({
rate_plot()
})
}
# Run the application
shinyApp(ui = ui, server = server)