-
Notifications
You must be signed in to change notification settings - Fork 0
/
mtx_squareform.pd
113 lines (113 loc) · 3.02 KB
/
mtx_squareform.pd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
#N canvas 279 22 474 813 12;
#X declare -lib iemmatrix;
#X obj 10 16 inlet;
#X obj 194 776 outlet;
#X obj 84 76 mtx_size;
#X obj 137 116 select 1;
#X text 219 124 solve size of matrix:;
#X obj 138 656 mtx;
#X obj 293 306 mtx_zeros;
#X obj 10 116 list split 3;
#X obj 117 306 f;
#X obj 205 306 - 1;
#X obj 50 266 t a b;
#X obj 205 146 expr (sqrt(1 + 8* $f1) + 1)/2;
#X obj 9 237 list;
#X obj -40 177 trigger b a;
#X obj -40 207 delay;
#X obj -40 147 r \$0-rem;
#X msg 249 306 1;
#X obj 155 336 s \$0-nx;
#X obj 50 336 list split;
#X obj 83 366 route bang;
#X obj 150 396 s \$0-rem;
#X obj 156 616 mtx_fill;
#X obj 50 416 t a b;
#X msg 249 596 matrix \$1 \$2;
#X obj 249 526 pack f f;
#X obj 249 496 + 1;
#X obj 249 436 cup;
#X obj 249 466 t a a;
#X obj 50 526 cyclone/prepend;
#X msg 152 496 matrix \$1 1;
#X obj 152 466 r \$0-nx;
#X obj 293 336 s \$0-m0;
#X obj 182 526 r \$0-m0;
#X obj 205 176 trigger a a a;
#X obj 10 46 trigger a a;
#X obj 50 556 t a a;
#X obj 50 616 select 1;
#X msg 50 586 \$1;
#X obj 138 716 mtx_transpose;
#X obj 138 686 trigger any any;
#X obj 194 746 mtx_add;
#N canvas 0 22 428 308 information 0;
#X text 16 52 example 1 \, row: "matrix 1 6 10 11 2 5 7 3";
#X text 16 72 example 2 \, column: "matrix 2 1 3 15";
#X text 16 12 INLET:;
#X text 16 32 Vector formatted as one-column or one-row matrix.;
#X text 16 222 OUTLET:;
#X text 16 92 This vector is the lower triangle of a diagonally;
#X text 16 242 The full square matrix \, being diagonally symmetric
;
#X text 16 262 and having only zeros in the main diagonal.;
#X text 16 112 symmetric matrix \, excluding the diagonal. Its;
#X text 16 132 elements correspond to the originating matrix's;
#X text 16 152 indexes as follows:;
#X text 16 192 (N \, N-1).;
#X text 16 172 (2 \, 1) \, (3 \, 1) \, ... \, (N \, 1) \, (3 \, 2)
\, ... \, (N \, 2) \, ... \,;
#X restore 310 86 pd information;
#X obj 296 46 import iemmatrix;
#X text 73 16 vector formatted as one-column or one-row matrix;
#X text -26 776 Juan Ignacio Mendoza - 2019;
#X connect 0 0 34 0;
#X connect 2 0 3 0;
#X connect 2 1 3 0;
#X connect 3 1 11 0;
#X connect 5 0 39 0;
#X connect 6 0 31 0;
#X connect 7 1 10 0;
#X connect 8 0 9 0;
#X connect 8 0 18 1;
#X connect 8 0 17 0;
#X connect 9 0 8 1;
#X connect 10 0 18 0;
#X connect 10 1 8 0;
#X connect 11 0 33 0;
#X connect 12 0 10 0;
#X connect 13 0 14 0;
#X connect 13 1 12 1;
#X connect 14 0 12 0;
#X connect 15 0 13 0;
#X connect 16 0 26 0;
#X connect 18 0 22 0;
#X connect 18 1 19 0;
#X connect 19 1 20 0;
#X connect 21 0 5 1;
#X connect 22 0 28 0;
#X connect 22 1 26 0;
#X connect 23 0 21 2;
#X connect 24 0 23 0;
#X connect 25 0 24 0;
#X connect 26 0 27 0;
#X connect 27 0 25 0;
#X connect 27 1 24 1;
#X connect 28 0 35 0;
#X connect 29 0 28 1;
#X connect 30 0 29 0;
#X connect 32 0 21 1;
#X connect 33 0 9 0;
#X connect 33 1 16 0;
#X connect 33 2 6 0;
#X connect 34 0 7 0;
#X connect 34 1 2 0;
#X connect 35 0 37 0;
#X connect 35 1 21 0;
#X connect 36 0 5 0;
#X connect 37 0 36 0;
#X connect 38 0 40 0;
#X connect 39 0 38 0;
#X connect 39 1 40 1;
#X connect 40 0 1 0;
#X coords 0 0 1 1 200 30 0;