-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathregression.R
266 lines (187 loc) · 8.87 KB
/
regression.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
rm(list=ls())
library(pROC)
library(caret)
library(varhandle)
library(spdep) # morans
############################################################################################################################
###################### functions #######################################################################################
############################################################################################################################
create_model <- function(data, significance = 0.05, split = F, train_part = 0.5, select = T) {
data$landuse <- as.factor(data$landuse)
# split data in train and test part
if(split == T) {
trainIds <- createDataPartition(data$X, p = train_part, list = FALSE)
data.train <- data[trainIds,]
data.test <- data[-trainIds,]
} else {
data.train <- data
}
# create model with all variables
model <- glm(formula = change ~ landuse + built_dens + pop_dens + slope +
mRoads_dist + pRoads_dist + river_dist + train_dist + center_dist + airport_dist,
family = "binomial",
data = data.train)
#
formula <- "change ~ "
if(TRUE %in% (summary(model)$coefficients[1:5,4] < significance)) {
formula <- paste(formula, "landuse")
}
# find signifcant variables and add them to the formula for the new model
for (i in c(6:length(summary(model)$coefficients[,4]))) {
if(summary(model)$coefficients[i,4] < significance) {
formula <- paste(formula, "+", rownames(summary(model)$coefficients)[i])
}
}
# model with significant variables
model.s <- glm(formula = formula,
family = "binomial",
data = data.train)
if(select == F) {
model.s <- model
}
# calculate roc of new model
model.s.roc <- calc_roc(model.s)
#, test_data = data.test)
print(model.s.roc)
return(model.s)
}
#############################################################
# forward feature selection
#############################################################
library(CAST)
ffs_model <- function(data, significance = 0.1) {
# split landuse
data.dummy <- data
data.dummy$landuse <- as.factor(data.dummy$landuse)
# create folds for cross validation
cv_strata_l <- length(unique((data.dummy[,"cv_strata"])))
indices <- CreateSpacetimeFolds(data.dummy, spacevar = "cv_strata", k = cv_strata_l)
ctrl <- trainControl(method = "cv", index = indices$index)
# check for predictors (because landuse 3 is not existent in sevilla data)
predictors <- c("landuse", "built_dens", "pop_dens", "slope", "mRoads_dist", "pRoads_dist", "river_dist", "train_dist", "center_dist", "airport_dist")
# initialize trained object
trained <- deparse(substitute(data))
# glm with all factors
trained$glm <- create_model(data.dummy, split = F, select = F)
# glm with significant factors
trained$glm$sig <- create_model(data.dummy, split = F, significance = significance)
trained$cv_strata <- cv_strata_l
# use forward feature selection to select best combination of determinants
trained$ffs <- ffs(data.dummy[,predictors], data.dummy[,"change"],
method = "glm",
family = "binomial",
trControl = ctrl)
# create a model with cv containing all determinants
trained$train <- train(data.dummy[,predictors], data.dummy[,"change"],
method = "glm",
family = "binomial",
trControl = ctrl)
# if a ffs model doesnt contain landuse, calculate a model with landuse
ffs_predictors <- names(trained$ffs$finalModel$coefficients)
if(!("landuse2" %in% ffs_predictors)) {
ffs_predictors <- append(ffs_predictors, "landuse")
ffs_predictors <- ffs_predictors[-1]
trained$ffs_plus <- train(data.dummy[,ffs_predictors], data.dummy[,"change"],
method = "glm",
family = "binomial",
trControl = ctrl)
} else {
trained$ffs_plus <- trained$ffs
}
return(trained)
}
bss_model <- function (data, city_name) {
data.dummy <- data
data.dummy$landuse <- as.factor(data.dummy$landuse)
# create folds for cross validation
cv_strata_l <- length(unique((data.dummy[,"cv_strata"])))
indices <- CreateSpacetimeFolds(data.dummy, spacevar = "cv_strata", k = cv_strata_l)
ctrl <- trainControl(method = "cv", index = indices$index)
# check for predictors (because landuse 3 is not existent in sevilla data)
predictors <- c("landuse", "built_dens", "pop_dens", "slope", "mRoads_dist", "pRoads_dist", "river_dist", "train_dist", "center_dist", "airport_dist")
trained_bss <- bss(data.dummy[,predictors], data.dummy[,"change"],
method = "glm",
family = "binomial",
trControl = ctrl)
setwd("C:/Users/janst/sciebo/Bachelor Thesis/results/models_RDS/")
saveRDS(trained_bss, paste("trained_bss_", city_name, ".rds", sep = ""))
bss_predictors <- names(trained_bss$finalModel$coefficients)
if(!("landuse2" %in% bss_predictors)) {
bss_predictors <- append(bss_predictors, "landuse")
bss_predictors <- bss_predictors[-1]
trained_bss_plus <- train(data.dummy[,bss_predictors], data.dummy[,"change"],
method = "glm",
family = "binomial",
trControl = ctrl)
} else {
trained_bss_plus <- trained_bss
}
saveRDS(trained_bss_plus, paste("trained_bss_plus", city_name, ".rds", sep = ""))
}
############################################################################################################################
###################### ROC functions #######################################################################################
############################################################################################################################
# see: https://stackoverflow.com/questions/18449013/r-logistic-regression-area-under-curve
calc_roc <- function(model, test_data = NULL, main = "") {
if(is.null(test_data)){
prob = predict(model, type = c("response"))
model$data$prob = prob
if (is.null(model$model$.outcome)) {
g <- roc(model$model$change ~ prob, data = model$data)
} else {
g <- roc(model$model$.outcome ~ prob, data = model$data)
}
print("model data")
} else {
test_data$landuse <- as.factor(test_data$landuse)
prob = predict(model, newdata = test_data, type = c("response"))
# test_data$prob = prob
g <- roc(test_data$change ~ prob, data = test_data)
print("test data")
}
plot.roc(g, print.auc = TRUE, print.auc.x = 0.3, print.auc.y = 0, print.auc.cex = 1.5, main = main, cex.lab =1.5, cex.axis = 1.5)
return(g$auc)
}
########################################################################################
########################################################################################
### the following code was at the end not used for the thesis
########################################################################################
########################################################################################
split_landuse <- function(data) {
if("cv_strata" %in% colnames(data)) {
predictors <- c("change", "built_dens", "pop_dens", "slope", "landuse", "mRoads_dist", "pRoads_dist", "river_dist", "train_dist", "center_dist", "airport_dist", "cv_strata")
} else {
predictors <- c("change", "built_dens", "pop_dens", "slope", "landuse", "mRoads_dist", "pRoads_dist", "river_dist", "train_dist", "center_dist", "airport_dist")
}
data.dummy <- cbind(data[,predictors], to.dummy(data$landuse, prefix = "landuse"))
data.dummy["landuse"] <- NULL
return(data.dummy)
}
########################################################################################################
# Moran's I
########################################################################################################
calc_moransI <- function(samples, dist = NULL, k = NULL) {
# get coordinates as matrix
coords <- as.matrix(cbind(samples$x, samples$y))
if(!is.null(dist)) {
nb <- dnearneigh(coords, 0, dist)
} else if(!is.null(k)) {
nb <- knn2nb(knearneigh(coords, k = k))
} else {
# identify neighbours
# within the minimum distance so every sample has at least one neighbour
k1 <- knn2nb(knearneigh(coords))
k1dists <- unlist(nbdists(k1, coords))
# summary(k1dists)
nb <- dnearneigh(coords, 0, max(k1dists))
print("max dist:")
print(max(k1dists))
}
print(nb)
# get neighbour list
lw <- nb2listw(nb,zero.policy = T)
# lw_k1 <- nb2listw(k1, zero.policy = T)
# calculate Morans I
morans <- moran.test(samples$change, lw, randomisation = F, alternative = "two.sided", zero.policy = T)
return(morans)
}