-
Notifications
You must be signed in to change notification settings - Fork 93
/
Copy pathex2_1_ann_mnist_cl.py
141 lines (108 loc) · 3.96 KB
/
ex2_1_ann_mnist_cl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
##############################################
# Modeling
##############################################
from keras import layers, models
def ANN_models_func(Nin, Nh, Nout):
x = layers.Input(shape=(Nin,))
h = layers.Activation('relu')(layers.Dense(Nh)(x))
y = layers.Activation('softmax')(layers.Dense(Nout)(h))
model = models.Model(x, y)
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
return model
def ANN_seq_func(Nin, Nh, Nout):
model = models.Sequential()
model.add(layers.Dense(Nh, activation='relu', input_shape=(Nin,)))
model.add(layers.Dense(Nout, activation='softmax'))
model.compile(loss='categorical_crossentropy',
optimizer='adam', metrics=['accuracy'])
return model
class ANN_models_class(models.Model):
def __init__(self, Nin, Nh, Nout):
# Prepare network layers and activate functions
hidden = layers.Dense(Nh)
output = layers.Dense(Nout)
relu = layers.Activation('relu')
softmax = layers.Activation('softmax')
# Connect network elements
x = layers.Input(shape=(Nin,))
h = relu(hidden(x))
y = softmax(output(h))
super().__init__(x, y)
self.compile(loss='categorical_crossentropy',
optimizer='adam', metrics=['accuracy'])
class ANN_seq_class(models.Sequential):
def __init__(self, Nin, Nh, Nout):
super().__init__()
self.add(layers.Dense(Nh, activation='relu', input_shape=(Nin,)))
self.add(layers.Dense(Nout, activation='softmax'))
self.compile(loss='categorical_crossentropy',
optimizer='adam', metrics=['accuracy'])
##############################################
# Data
##############################################
import numpy as np
from keras import datasets # mnist
from keras.utils import np_utils # to_categorical
def Data_func():
(X_train, y_train), (X_test, y_test) = datasets.mnist.load_data()
Y_train = np_utils.to_categorical(y_train)
Y_test = np_utils.to_categorical(y_test)
L, W, H = X_train.shape
X_train = X_train.reshape(-1, W * H)
X_test = X_test.reshape(-1, W * H)
X_train = X_train / 255.0
X_test = X_test / 255.0
return (X_train, Y_train), (X_test, Y_test)
##############################################
# Plotting
##############################################
import matplotlib.pyplot as plt
def plot_acc(history, title=None):
# summarize history for accuracy
if not isinstance(history, dict):
history = history.history
plt.plot(history['acc'])
plt.plot(history['val_acc'])
if title is not None:
plt.title(title)
plt.ylabel('Accuracy')
plt.xlabel('Epoch')
plt.legend(['Training', 'Verification'], loc=0)
# plt.show()
def plot_loss(history, title=None):
# summarize history for loss
if not isinstance(history, dict):
history = history.history
plt.plot(history['loss'])
plt.plot(history['val_loss'])
if title is not None:
plt.title(title)
plt.ylabel('Loss')
plt.xlabel('Epoch')
plt.legend(['Training', 'Verification'], loc=0)
# plt.show()
##############################################
# Main
##############################################
def main():
Nin = 784
Nh = 100
number_of_class = 10
Nout = number_of_class
# model = ANN_models_func(Nin, Nh, Nout)
# model = ANN_models_class(Nin, Nh, Nout)
model = ANN_seq_class(Nin, Nh, Nout)
(X_train, Y_train), (X_test, Y_test) = Data_func()
##############################################
# Training
##############################################
history = model.fit(X_train, Y_train, epochs=15, batch_size=100, validation_split=0.2)
performace_test = model.evaluate(X_test, Y_test, batch_size=100)
print('Test Loss and Accuracy ->', performace_test)
plot_loss(history)
plt.show()
plot_acc(history)
plt.show()
# Run code
if __name__ == '__main__':
main()