-
Notifications
You must be signed in to change notification settings - Fork 77
/
cart.ml
733 lines (613 loc) · 29.7 KB
/
cart.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
(* ========================================================================= *)
(* Definition of finite Cartesian product types. *)
(* *)
(* (c) Copyright, John Harrison 1998-2007 *)
(* (c) Copyright, Andrea Gabrielli, Marco Maggesi 2017-2018 *)
(* ========================================================================= *)
needs "iterate.ml";;
(* ------------------------------------------------------------------------- *)
(* Association of a number with an indexing type. *)
(* ------------------------------------------------------------------------- *)
let dimindex = new_definition
`dimindex(s:A->bool) = if FINITE(:A) then CARD(:A) else 1`;;
let DIMINDEX_NONZERO = prove
(`!s:A->bool. ~(dimindex(s) = 0)`,
GEN_TAC THEN REWRITE_TAC[dimindex] THEN
COND_CASES_TAC THEN ASM_SIMP_TAC[CARD_EQ_0; ARITH] THEN SET_TAC[]);;
let DIMINDEX_GE_1 = prove
(`!s:A->bool. 1 <= dimindex(s)`,
REWRITE_TAC[ARITH_RULE `1 <= x <=> ~(x = 0)`; DIMINDEX_NONZERO]);;
let DIMINDEX_UNIV = prove
(`!s. dimindex(s:A->bool) = dimindex(:A)`,
REWRITE_TAC[dimindex]);;
let DIMINDEX_UNIQUE = prove
(`(:A) HAS_SIZE n ==> dimindex(:A) = n`,
MESON_TAC[dimindex; HAS_SIZE]);;
let UNIV_HAS_SIZE_DIMINDEX = prove
(`(:N) HAS_SIZE dimindex (:N) <=> FINITE(:N)`,
MESON_TAC[HAS_SIZE; dimindex]);;
let HAS_SIZE_1 = prove
(`(:1) HAS_SIZE 1`,
SUBGOAL_THEN `(:1) = {one}` SUBST1_TAC THENL
[REWRITE_TAC[EXTENSION; IN_UNIV; IN_SING] THEN MESON_TAC[one];
SIMP_TAC[NOT_IN_EMPTY; HAS_SIZE; FINITE_RULES; CARD_CLAUSES; ARITH]]);;
let NUMSEG_LT_DIMINDEX = prove
(`{i | i < dimindex(:N)} = 0..dimindex(:N)-1`,
REWRITE_TAC[NUMSEG_LT; DIMINDEX_NONZERO]);;
let DIMINDEX_1 = MATCH_MP DIMINDEX_UNIQUE HAS_SIZE_1;;
(* ------------------------------------------------------------------------- *)
(* An indexing type with that size, parametrized by base type. *)
(* ------------------------------------------------------------------------- *)
let finite_image_tybij =
new_type_definition "finite_image" ("finite_index","dest_finite_image")
(prove
(`?x. x IN 1..dimindex(:A)`,
EXISTS_TAC `1` THEN REWRITE_TAC[IN_NUMSEG; LE_REFL; DIMINDEX_GE_1]));;
let FINITE_IMAGE_IMAGE = prove
(`UNIV:(A)finite_image->bool = IMAGE finite_index (1..dimindex(:A))`,
REWRITE_TAC[EXTENSION; IN_UNIV; IN_IMAGE] THEN
MESON_TAC[finite_image_tybij]);;
(* ------------------------------------------------------------------------- *)
(* Dimension of such a type, and indexing over it. *)
(* ------------------------------------------------------------------------- *)
let HAS_SIZE_FINITE_IMAGE = prove
(`!s. (UNIV:(A)finite_image->bool) HAS_SIZE dimindex(s:A->bool)`,
GEN_TAC THEN SIMP_TAC[FINITE_IMAGE_IMAGE] THEN
MATCH_MP_TAC HAS_SIZE_IMAGE_INJ THEN
ONCE_REWRITE_TAC[DIMINDEX_UNIV] THEN REWRITE_TAC[HAS_SIZE_NUMSEG_1] THEN
MESON_TAC[finite_image_tybij]);;
let CARD_FINITE_IMAGE = prove
(`!s. CARD(UNIV:(A)finite_image->bool) = dimindex(s:A->bool)`,
MESON_TAC[HAS_SIZE_FINITE_IMAGE; HAS_SIZE]);;
let FINITE_FINITE_IMAGE = prove
(`FINITE(UNIV:(A)finite_image->bool)`,
MESON_TAC[HAS_SIZE_FINITE_IMAGE; HAS_SIZE]);;
let DIMINDEX_FINITE_IMAGE = prove
(`!s t. dimindex(s:(A)finite_image->bool) = dimindex(t:A->bool)`,
REPEAT GEN_TAC THEN GEN_REWRITE_TAC LAND_CONV [dimindex] THEN
MP_TAC(ISPEC `t:A->bool` HAS_SIZE_FINITE_IMAGE) THEN
SIMP_TAC[FINITE_FINITE_IMAGE; HAS_SIZE]);;
let FINITE_INDEX_WORKS = prove
(`!i:(A)finite_image.
?!n. 1 <= n /\ n <= dimindex(:A) /\ (finite_index n = i)`,
REWRITE_TAC[CONJ_ASSOC; GSYM IN_NUMSEG] THEN MESON_TAC[finite_image_tybij]);;
let FINITE_INDEX_INJ = prove
(`!i j. 1 <= i /\ i <= dimindex(:A) /\
1 <= j /\ j <= dimindex(:A)
==> ((finite_index i :A finite_image = finite_index j) <=>
(i = j))`,
MESON_TAC[FINITE_INDEX_WORKS]);;
let FORALL_FINITE_INDEX = prove
(`(!k:(N)finite_image. P k) =
(!i. 1 <= i /\ i <= dimindex(:N) ==> P(finite_index i))`,
MESON_TAC[FINITE_INDEX_WORKS]);;
(* ------------------------------------------------------------------------- *)
(* Hence finite Cartesian products, with indexing and lambdas. *)
(* ------------------------------------------------------------------------- *)
let cart_tybij =
new_type_definition "cart" ("mk_cart","dest_cart")
(prove(`?f:(B)finite_image->A. T`,REWRITE_TAC[]));;
parse_as_infix("$",(25,"left"));;
let finite_index = new_definition
`(x:A^N)$i = dest_cart x (finite_index i)`;;
let CART_EQ = prove
(`!x:A^B y.
(x = y) <=> !i. 1 <= i /\ i <= dimindex(:B) ==> (x$i = y$i)`,
REPEAT GEN_TAC THEN REWRITE_TAC[finite_index; GSYM FORALL_FINITE_INDEX] THEN
REWRITE_TAC[GSYM FUN_EQ_THM; ETA_AX] THEN MESON_TAC[cart_tybij]);;
parse_as_binder "lambda";;
let lambda = new_definition
`(lambda) g =
@f:A^B. !i. 1 <= i /\ i <= dimindex(:B) ==> (f$i = g i)`;;
let LAMBDA_BETA = prove
(`!i. 1 <= i /\ i <= dimindex(:B)
==> (((lambda) g:A^B) $i = g i)`,
REWRITE_TAC[lambda] THEN CONV_TAC SELECT_CONV THEN
EXISTS_TAC `mk_cart(\k. g(@i. 1 <= i /\ i <= dimindex(:B) /\
(finite_index i = k))):A^B` THEN
REWRITE_TAC[finite_index; REWRITE_RULE[] cart_tybij] THEN
REPEAT STRIP_TAC THEN AP_TERM_TAC THEN MATCH_MP_TAC SELECT_UNIQUE THEN
GEN_TAC THEN REWRITE_TAC[] THEN
ASM_MESON_TAC[FINITE_INDEX_INJ; DIMINDEX_FINITE_IMAGE]);;
let LAMBDA_UNIQUE = prove
(`!f:A^B g.
(!i. 1 <= i /\ i <= dimindex(:B) ==> (f$i = g i)) <=>
((lambda) g = f)`,
SIMP_TAC[CART_EQ; LAMBDA_BETA] THEN MESON_TAC[]);;
let LAMBDA_ETA = prove
(`!g. (lambda i. g$i):A^B = g`,
REWRITE_TAC[CART_EQ; LAMBDA_BETA]);;
(* ------------------------------------------------------------------------- *)
(* For some purposes we can avoid side-conditions on the index. *)
(* ------------------------------------------------------------------------- *)
let FINITE_INDEX_INRANGE = prove
(`!i. ?k. 1 <= k /\ k <= dimindex(:N) /\ !x:A^N. x$i = x$k`,
REWRITE_TAC[finite_index] THEN MESON_TAC[FINITE_INDEX_WORKS]);;
let FINITE_INDEX_INRANGE_2 = prove
(`!i. ?k. 1 <= k /\ k <= dimindex(:N) /\
(!x:A^N. x$i = x$k) /\ (!y:B^N. y$i = y$k)`,
REWRITE_TAC[finite_index] THEN MESON_TAC[FINITE_INDEX_WORKS]);;
let CART_EQ_FULL = prove
(`!x y:A^N. x = y <=> !i. x$i = y$i`,
REPEAT GEN_TAC THEN EQ_TAC THEN SIMP_TAC[] THEN SIMP_TAC[CART_EQ]);;
(* ------------------------------------------------------------------------- *)
(* We need a non-standard sum to "paste" together Cartesian products. *)
(* ------------------------------------------------------------------------- *)
let finite_sum_tybij =
let th = prove
(`?x. x IN 1..(dimindex(:A) + dimindex(:B))`,
EXISTS_TAC `1` THEN SIMP_TAC[IN_NUMSEG; LE_REFL; DIMINDEX_GE_1;
ARITH_RULE `1 <= a ==> 1 <= a + b`]) in
new_type_definition "finite_sum" ("mk_finite_sum","dest_finite_sum") th;;
let pastecart = new_definition
`(pastecart:A^M->A^N->A^(M,N)finite_sum) f g =
lambda i. if i <= dimindex(:M) then f$i
else g$(i - dimindex(:M))`;;
let fstcart = new_definition
`(fstcart:A^(M,N)finite_sum->A^M) f = lambda i. f$i`;;
let sndcart = new_definition
`(sndcart:A^(M,N)finite_sum->A^N) f =
lambda i. f$(i + dimindex(:M))`;;
let FINITE_SUM_IMAGE = prove
(`UNIV:(A,B)finite_sum->bool =
IMAGE mk_finite_sum (1..(dimindex(:A)+dimindex(:B)))`,
REWRITE_TAC[EXTENSION; IN_UNIV; IN_IMAGE] THEN
MESON_TAC[finite_sum_tybij]);;
let DIMINDEX_HAS_SIZE_FINITE_SUM = prove
(`(UNIV:(M,N)finite_sum->bool) HAS_SIZE (dimindex(:M) + dimindex(:N))`,
SIMP_TAC[FINITE_SUM_IMAGE] THEN
MATCH_MP_TAC HAS_SIZE_IMAGE_INJ THEN
ONCE_REWRITE_TAC[DIMINDEX_UNIV] THEN REWRITE_TAC[HAS_SIZE_NUMSEG_1] THEN
MESON_TAC[finite_sum_tybij]);;
let DIMINDEX_FINITE_SUM = prove
(`dimindex(:(M,N)finite_sum) = dimindex(:M) + dimindex(:N)`,
GEN_REWRITE_TAC LAND_CONV [dimindex] THEN
REWRITE_TAC[REWRITE_RULE[HAS_SIZE] DIMINDEX_HAS_SIZE_FINITE_SUM]);;
let FSTCART_PASTECART = prove
(`!x y. fstcart(pastecart (x:A^M) (y:A^N)) = x`,
SIMP_TAC[pastecart; fstcart; CART_EQ; LAMBDA_BETA; DIMINDEX_FINITE_SUM;
ARITH_RULE `a <= b ==> a <= b + c`]);;
let SNDCART_PASTECART = prove
(`!x y. sndcart(pastecart (x:A^M) (y:A^N)) = y`,
SIMP_TAC[pastecart; sndcart; CART_EQ; LAMBDA_BETA] THEN REPEAT STRIP_TAC THEN
W(fun (_,w) -> MP_TAC (PART_MATCH (lhs o rand) LAMBDA_BETA (lhand w))) THEN
ANTS_TAC THENL
[REWRITE_TAC[DIMINDEX_FINITE_SUM] THEN MATCH_MP_TAC
(ARITH_RULE `1 <= i /\ i <= b ==> 1 <= i + a /\ i + a <= a + b`) THEN
ASM_REWRITE_TAC[];
DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[] THEN
ASM_SIMP_TAC[ADD_SUB; ARITH_RULE `1 <= i ==> ~(i + a <= a)`]]);;
let PASTECART_FST_SND = prove
(`!z. pastecart (fstcart z) (sndcart z):A^(M,N)finite_sum = z`,
SIMP_TAC[pastecart; fstcart; sndcart; CART_EQ; LAMBDA_BETA] THEN
REPEAT GEN_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN
ASM_SIMP_TAC[DIMINDEX_FINITE_SUM; LAMBDA_BETA;
ARITH_RULE `i <= a + b ==> i - a <= b`;
ARITH_RULE `~(i <= a) ==> 1 <= i - a`;
ARITH_RULE `~(i <= a) ==> ((i - a) + a = i)`]);;
let PASTECART_EQ = prove
(`!x y:A^(M,N)finite_sum.
x = y <=> fstcart x = fstcart y /\ sndcart x = sndcart y`,
MESON_TAC[PASTECART_FST_SND]);;
let FORALL_PASTECART = prove
(`(!p:A^(M,N)finite_sum. P p) <=> !x y. P (pastecart x y)`,
MESON_TAC[PASTECART_FST_SND; FSTCART_PASTECART; SNDCART_PASTECART]);;
let EXISTS_PASTECART = prove
(`(?p:A^(M,N)finite_sum. P p) <=> ?x y. P (pastecart x y)`,
MESON_TAC[PASTECART_FST_SND; FSTCART_PASTECART; SNDCART_PASTECART]);;
let PASTECART_INJ = prove
(`!x:A^M y:A^N w z. pastecart x y = pastecart w z <=> x = w /\ y = z`,
REWRITE_TAC[PASTECART_EQ; FSTCART_PASTECART; SNDCART_PASTECART]);;
let FSTCART_COMPONENT = prove
(`!x:A^(M,N)finite_sum i. 1 <= i /\ i <= dimindex(:M)
==> fstcart x$i = x$i`,
SIMP_TAC[fstcart; LAMBDA_BETA]);;
let SNDCART_COMPONENT = prove
(`!x:A^(M,N)finite_sum i. 1 <= i /\ i <= dimindex(:N)
==> sndcart x$i = x$(i + dimindex(:M))`,
SIMP_TAC[sndcart; LAMBDA_BETA]);;
let PASTECART_COMPONENT = prove
(`(!u:A^M v:A^N i. 1 <= i /\ i <= dimindex(:M) ==> pastecart u v$i = u$i) /\
(!u:A^M v:A^N i. dimindex(:M) + 1 <= i /\ i <= dimindex(:M) + dimindex(:N)
==> pastecart u v$i = v$(i - dimindex(:M)))`,
REWRITE_TAC[pastecart] THEN CONJ_TAC THEN REPEAT GEN_TAC THEN STRIP_TAC THENL
[SUBGOAL_THEN `i <= dimindex(:(M,N)finite_sum)`
(fun th -> ASM_SIMP_TAC[LAMBDA_BETA; th]) THEN
REWRITE_TAC[DIMINDEX_FINITE_SUM] THEN ASM_ARITH_TAC;
ASM_SIMP_TAC[LAMBDA_BETA; DIMINDEX_FINITE_SUM;
ARITH_RULE `dimindex(:M) + 1 <= i ==> 1 <= i`] THEN
COND_CASES_TAC THEN REWRITE_TAC[] THEN ASM_ARITH_TAC]);;
(* ------------------------------------------------------------------------- *)
(* Likewise a "subtraction" function on type indices. *)
(* ------------------------------------------------------------------------- *)
let finite_diff_tybij =
let th = prove
(`?x. x IN 1..(if dimindex(:B) < dimindex(:A)
then dimindex(:A) - dimindex(:B) else 1)`,
EXISTS_TAC `1` THEN REWRITE_TAC[IN_NUMSEG] THEN ARITH_TAC) in
new_type_definition "finite_diff" ("mk_finite_diff","dest_finite_diff") th;;
let FINITE_DIFF_IMAGE = prove
(`UNIV:(A,B)finite_diff->bool =
IMAGE mk_finite_diff
(1..(if dimindex(:B) < dimindex(:A)
then dimindex(:A) - dimindex(:B) else 1))`,
REWRITE_TAC[EXTENSION; IN_UNIV; IN_IMAGE] THEN
MESON_TAC[finite_diff_tybij]);;
let DIMINDEX_HAS_SIZE_FINITE_DIFF = prove
(`(UNIV:(M,N)finite_diff->bool) HAS_SIZE
(if dimindex(:N) < dimindex(:M) then dimindex(:M) - dimindex(:N) else 1)`,
SIMP_TAC[FINITE_DIFF_IMAGE] THEN
MATCH_MP_TAC HAS_SIZE_IMAGE_INJ THEN
ONCE_REWRITE_TAC[DIMINDEX_UNIV] THEN REWRITE_TAC[HAS_SIZE_NUMSEG_1] THEN
MESON_TAC[finite_diff_tybij]);;
let DIMINDEX_FINITE_DIFF = prove
(`dimindex(:(M,N)finite_diff) =
if dimindex(:N) < dimindex(:M) then dimindex(:M) - dimindex(:N) else 1`,
GEN_REWRITE_TAC LAND_CONV [dimindex] THEN
REWRITE_TAC[REWRITE_RULE[HAS_SIZE] DIMINDEX_HAS_SIZE_FINITE_DIFF]);;
(* ------------------------------------------------------------------------- *)
(* And a finite-forcing "multiplication" on type indices. *)
(* ------------------------------------------------------------------------- *)
let finite_prod_tybij =
let th = prove
(`?x. x IN 1..(dimindex(:A) * dimindex(:B))`,
EXISTS_TAC `1` THEN REWRITE_TAC[IN_NUMSEG; LE_REFL] THEN
MESON_TAC[LE_1; DIMINDEX_GE_1; MULT_EQ_0]) in
new_type_definition "finite_prod" ("mk_finite_prod","dest_finite_prod") th;;
let FINITE_PROD_IMAGE = prove
(`UNIV:(A,B)finite_prod->bool =
IMAGE mk_finite_prod (1..(dimindex(:A)*dimindex(:B)))`,
REWRITE_TAC[EXTENSION; IN_UNIV; IN_IMAGE] THEN
MESON_TAC[finite_prod_tybij]);;
let DIMINDEX_HAS_SIZE_FINITE_PROD = prove
(`(UNIV:(M,N)finite_prod->bool) HAS_SIZE (dimindex(:M) * dimindex(:N))`,
SIMP_TAC[FINITE_PROD_IMAGE] THEN
MATCH_MP_TAC HAS_SIZE_IMAGE_INJ THEN
ONCE_REWRITE_TAC[DIMINDEX_UNIV] THEN REWRITE_TAC[HAS_SIZE_NUMSEG_1] THEN
MESON_TAC[finite_prod_tybij]);;
let DIMINDEX_FINITE_PROD = prove
(`dimindex(:(M,N)finite_prod) = dimindex(:M) * dimindex(:N)`,
GEN_REWRITE_TAC LAND_CONV [dimindex] THEN
REWRITE_TAC[REWRITE_RULE[HAS_SIZE] DIMINDEX_HAS_SIZE_FINITE_PROD]);;
(* ------------------------------------------------------------------------- *)
(* Type constructors for setting up finite types indexed by binary numbers. *)
(* ------------------------------------------------------------------------- *)
let tybit0_INDUCT,tybit0_RECURSION = define_type
"tybit0 = mktybit0((A,A)finite_sum)";;
let tybit1_INDUCT,tybit1_RECURSION = define_type
"tybit1 = mktybit1(((A,A)finite_sum,1)finite_sum)";;
let HAS_SIZE_TYBIT0 = prove
(`(:(A)tybit0) HAS_SIZE 2 * dimindex(:A)`,
SUBGOAL_THEN
`(:(A)tybit0) = IMAGE mktybit0 (:(A,A)finite_sum)`
SUBST1_TAC THENL
[CONV_TAC SYM_CONV THEN MATCH_MP_TAC SURJECTIVE_IMAGE_EQ THEN
REWRITE_TAC[IN_UNIV] THEN MESON_TAC[cases "tybit0"];
MATCH_MP_TAC HAS_SIZE_IMAGE_INJ THEN
REWRITE_TAC[IN_UNIV; injectivity "tybit0"] THEN
W(MP_TAC o PART_MATCH lhand
DIMINDEX_HAS_SIZE_FINITE_SUM o lhand o snd) THEN
REWRITE_TAC[DIMINDEX_FINITE_SUM; GSYM MULT_2]]);;
let HAS_SIZE_TYBIT1 = prove
(`(:(A)tybit1) HAS_SIZE 2 * dimindex(:A) + 1`,
SUBGOAL_THEN
`(:(A)tybit1) = IMAGE mktybit1 (:((A,A)finite_sum,1)finite_sum)`
SUBST1_TAC THENL
[CONV_TAC SYM_CONV THEN MATCH_MP_TAC SURJECTIVE_IMAGE_EQ THEN
REWRITE_TAC[IN_UNIV] THEN MESON_TAC[cases "tybit1"];
MATCH_MP_TAC HAS_SIZE_IMAGE_INJ THEN
REWRITE_TAC[IN_UNIV; injectivity "tybit1"] THEN
W(MP_TAC o PART_MATCH lhand
DIMINDEX_HAS_SIZE_FINITE_SUM o lhand o snd) THEN
REWRITE_TAC[DIMINDEX_FINITE_SUM; DIMINDEX_1; GSYM MULT_2]]);;
let DIMINDEX_TYBIT0 = prove
(`dimindex(:(A)tybit0) = 2 * dimindex(:A)`,
MATCH_MP_TAC DIMINDEX_UNIQUE THEN MATCH_ACCEPT_TAC HAS_SIZE_TYBIT0);;
let DIMINDEX_TYBIT1 = prove
(`dimindex(:(A)tybit1) = 2 * dimindex(:A) + 1`,
MATCH_MP_TAC DIMINDEX_UNIQUE THEN MATCH_ACCEPT_TAC HAS_SIZE_TYBIT1);;
let DIMINDEX_CLAUSES = prove
(`dimindex(:1) = 1 /\
dimindex(:(A)tybit0) = 2 * dimindex(:A) /\
dimindex(:(A)tybit1) = 2 * dimindex(:A) + 1`,
REWRITE_TAC[DIMINDEX_1] THEN CONJ_TAC THEN
MATCH_MP_TAC DIMINDEX_UNIQUE THEN
REWRITE_TAC[ HAS_SIZE_TYBIT0; HAS_SIZE_TYBIT1]);;
let FINITE_1 = prove
(`FINITE (:1)`,
MESON_TAC[HAS_SIZE_1; HAS_SIZE]);;
let FINITE_TYBIT0 = prove
(`FINITE (:A tybit0)`,
MESON_TAC[HAS_SIZE_TYBIT0; HAS_SIZE]);;
let FINITE_TYBIT1 = prove
(`FINITE (:A tybit1)`,
MESON_TAC[HAS_SIZE_TYBIT1; HAS_SIZE]);;
let FINITE_CLAUSES = prove
(`FINITE(:1) /\ FINITE(:A tybit0) /\ FINITE(:A tybit1)`,
REWRITE_TAC[FINITE_1; FINITE_TYBIT0; FINITE_TYBIT1]);;
(* ------------------------------------------------------------------------- *)
(* Computing dimindex of fintypes. *)
(* ------------------------------------------------------------------------- *)
let DIMINDEX_CONV : conv =
let [pth_num;pth0;pth1;pth_one] = (CONJUNCTS o prove)
(`(dimindex(:A) = n <=> dimindex(s:A->bool) = NUMERAL n) /\
(dimindex(:A) = n <=> dimindex(:A tybit0) = BIT0 n) /\
(dimindex(:A) = n <=> dimindex(:A tybit1) = BIT1 n) /\
dimindex(:1) = BIT1 _0`,
CONJ_TAC THENL [REWRITE_TAC[NUMERAL; dimindex]; ALL_TAC] THEN
REWRITE_TAC[DIMINDEX_CLAUSES] THEN CONV_TAC BITS_ELIM_CONV THEN
ARITH_TAC) in
let nvar = `n:num` in
let rec calc_dimindex ty =
match ty with
Tyapp("1",_) -> pth_one
| Tyapp("tybit0",ty'::_) ->
let th = calc_dimindex ty' in
let n = rand(concl th) in
EQ_MP (INST [n,nvar] (INST_TYPE [ty',aty] pth0)) th
| Tyapp("tybit1",ty'::_) ->
let th = calc_dimindex ty' in
let n = rand(concl th) in
EQ_MP (INST [n,nvar] (INST_TYPE [ty',aty] pth1)) th
| _ -> fail() in
function
Comb(Const("dimindex",_),tm) ->
let uty = type_of tm in
let _,(sty::_) = dest_type uty in
let th = calc_dimindex sty in
let svar = mk_var("s",uty)
and ntm = rand(concl th) in
let pth = INST [tm,svar;ntm,nvar] (INST_TYPE [sty,aty] pth_num) in
EQ_MP pth th
| _ -> failwith "DIMINDEX_CONV";;
let HAS_SIZE_DIMINDEX_RULE =
let pth = prove
(`(:A) HAS_SIZE n <=> FINITE(:A) /\ dimindex(:A) = n`,
MESON_TAC[UNIV_HAS_SIZE_DIMINDEX; HAS_SIZE]) in
let htm = `(HAS_SIZE) (:A)`
and conv = GEN_REWRITE_CONV I [pth]
and rule = EQT_ELIM o GEN_REWRITE_CONV I [FINITE_CLAUSES] in
fun nty ->
let tm = mk_comb(inst[nty,aty] htm,mk_numeral (dest_finty nty)) in
let th1 = conv tm in
EQ_MP (SYM th1)
(CONJ (rule (lhand(rand(concl th1))))
(DIMINDEX_CONV (lhand(rand(rand(concl th1))))));;
let DIMINDEX_TAC : tactic =
CONV_TAC (ONCE_DEPTH_CONV DIMINDEX_CONV);;
(* ------------------------------------------------------------------------- *)
(* Remember cases 2, 3 and 4, which are especially useful for real^N. *)
(* ------------------------------------------------------------------------- *)
let DIMINDEX_2 = prove
(`dimindex (:2) = 2`,
DIMINDEX_TAC THEN REFL_TAC);;
let DIMINDEX_3 = prove
(`dimindex (:3) = 3`,
DIMINDEX_TAC THEN REFL_TAC);;
let DIMINDEX_4 = prove
(`dimindex (:4) = 4`,
DIMINDEX_TAC THEN REFL_TAC);;
let HAS_SIZE_2 = HAS_SIZE_DIMINDEX_RULE `:2`;;
let HAS_SIZE_3 = HAS_SIZE_DIMINDEX_RULE `:3`;;
let HAS_SIZE_4 = HAS_SIZE_DIMINDEX_RULE `:4`;;
(* ------------------------------------------------------------------------- *)
(* Finiteness lemma. *)
(* ------------------------------------------------------------------------- *)
let FINITE_CART = prove
(`!P. (!i. 1 <= i /\ i <= dimindex(:N) ==> FINITE {x | P i x})
==> FINITE {v:A^N | !i. 1 <= i /\ i <= dimindex(:N) ==> P i (v$i)}`,
GEN_TAC THEN DISCH_TAC THEN
SUBGOAL_THEN
`!n. n <= dimindex(:N)
==> FINITE {v:A^N | (!i. 1 <= i /\ i <= dimindex(:N) /\ i <= n
==> P i (v$i)) /\
(!i. 1 <= i /\ i <= dimindex(:N) /\ n < i
==> v$i = @x. F)}`
(MP_TAC o SPEC `dimindex(:N)`) THEN REWRITE_TAC[LE_REFL; LET_ANTISYM] THEN
INDUCT_TAC THENL
[REWRITE_TAC[ARITH_RULE `1 <= i /\ i <= n /\ i <= 0 <=> F`] THEN
SIMP_TAC[ARITH_RULE `1 <= i /\ i <= n /\ 0 < i <=> 1 <= i /\ i <= n`] THEN
SUBGOAL_THEN
`{v | !i. 1 <= i /\ i <= dimindex (:N) ==> v$i = (@x. F)} =
{(lambda i. @x. F):A^N}`
(fun th -> SIMP_TAC[FINITE_RULES;th]) THEN
SIMP_TAC[EXTENSION; IN_SING; IN_ELIM_THM; CART_EQ; LAMBDA_BETA];
ALL_TAC] THEN
DISCH_TAC THEN
MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC
`IMAGE (\(x:A,v:A^N). (lambda i. if i = SUC n then x else v$i):A^N)
{x,v | x IN {x:A | P (SUC n) x} /\
v IN {v:A^N | (!i. 1 <= i /\ i <= dimindex(:N) /\ i <= n
==> P i (v$i)) /\
(!i. 1 <= i /\ i <= dimindex (:N) /\ n < i
==> v$i = (@x. F))}}` THEN
CONJ_TAC THENL
[MATCH_MP_TAC FINITE_IMAGE THEN
ASM_SIMP_TAC[FINITE_PRODUCT; ARITH_RULE `1 <= SUC n`;
ARITH_RULE `SUC n <= m ==> n <= m`];
ALL_TAC] THEN
REWRITE_TAC[SUBSET; IN_IMAGE; IN_ELIM_PAIR_THM; EXISTS_PAIR_THM] THEN
X_GEN_TAC `v:A^N` THEN REWRITE_TAC[IN_ELIM_THM] THEN
STRIP_TAC THEN EXISTS_TAC `(v:A^N)$(SUC n)` THEN
EXISTS_TAC `(lambda i. if i = SUC n then @x. F else (v:A^N)$i):A^N` THEN
SIMP_TAC[CART_EQ; LAMBDA_BETA; ARITH_RULE `i <= n ==> ~(i = SUC n)`] THEN
ASM_MESON_TAC[LE; ARITH_RULE `1 <= SUC n`;
ARITH_RULE `n < i /\ ~(i = SUC n) ==> SUC n < i`]);;
(* ------------------------------------------------------------------------- *)
(* More cardinality results for whole universe. *)
(* ------------------------------------------------------------------------- *)
let HAS_SIZE_CART_UNIV = prove
(`!m. (:A) HAS_SIZE m ==> (:A^N) HAS_SIZE m EXP (dimindex(:N))`,
REPEAT STRIP_TAC THEN
SUBGOAL_THEN
`(:(N)finite_image->A) HAS_SIZE m EXP (dimindex(:N))`
MP_TAC THENL
[ASM_SIMP_TAC[HAS_SIZE_FUNSPACE_UNIV; HAS_SIZE_FINITE_IMAGE];
DISCH_THEN(MP_TAC o ISPEC `mk_cart:((N)finite_image->A)->A^N` o
MATCH_MP (REWRITE_RULE[IMP_CONJ_ALT] HAS_SIZE_IMAGE_INJ)) THEN
REWRITE_TAC[IN_UNIV] THEN
ANTS_TAC THENL [MESON_TAC[cart_tybij]; MATCH_MP_TAC EQ_IMP] THEN
AP_THM_TAC THEN AP_TERM_TAC THEN MATCH_MP_TAC SURJECTIVE_IMAGE_EQ THEN
REWRITE_TAC[IN_UNIV] THEN MESON_TAC[cart_tybij]]);;
let CARD_CART_UNIV = prove
(`FINITE(:A) ==> CARD(:A^N) = CARD(:A) EXP dimindex(:N)`,
MESON_TAC[HAS_SIZE_CART_UNIV; HAS_SIZE]);;
let FINITE_CART_UNIV = prove
(`FINITE(:A) ==> FINITE(:A^N)`,
MESON_TAC[HAS_SIZE_CART_UNIV; HAS_SIZE]);;
(* ------------------------------------------------------------------------- *)
(* Explicit construction of a vector from a list of components. *)
(* ------------------------------------------------------------------------- *)
let vector = new_definition
`(vector l):A^N = lambda i. EL (i - 1) l`;;
(* ------------------------------------------------------------------------- *)
(* Convenient set membership elimination theorem. *)
(* ------------------------------------------------------------------------- *)
let IN_ELIM_PASTECART_THM = prove
(`!P (a:A^M) (b:A^N). pastecart a b IN {pastecart x y | P x y} <=> P a b`,
REWRITE_TAC[IN_ELIM_THM; PASTECART_EQ;
FSTCART_PASTECART; SNDCART_PASTECART] THEN
MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Variant of product types using pasting of vectors. *)
(* ------------------------------------------------------------------------- *)
parse_as_infix("PCROSS",(22,"right"));;
let PCROSS = new_definition
`s PCROSS t = {pastecart (x:A^M) (y:A^N) | x IN s /\ y IN t}`;;
let FORALL_IN_PCROSS = prove
(`(!z:A^(M,N)finite_sum. z IN s PCROSS t ==> P z) <=>
(!x y. x IN s /\ y IN t ==> P(pastecart x y))`,
REWRITE_TAC[PCROSS; FORALL_IN_GSPEC]);;
let EXISTS_IN_PCROSS = prove
(`(?z:A^(M,N)finite_sum. z IN s PCROSS t /\ P z) <=>
(?x y. x IN s /\ y IN t /\ P(pastecart x y))`,
REWRITE_TAC[PCROSS; EXISTS_IN_GSPEC; CONJ_ASSOC]);;
let PASTECART_IN_PCROSS = prove
(`!s t (x:A^M) (y:A^N). (pastecart x y) IN (s PCROSS t) <=> x IN s /\ y IN t`,
REWRITE_TAC[PCROSS; IN_ELIM_PASTECART_THM]);;
let PCROSS_EQ_EMPTY = prove
(`!(s:A^M->bool) (t:A^N->bool). s PCROSS t = {} <=> s = {} \/ t = {}`,
REWRITE_TAC[PCROSS] THEN SET_TAC[]);;
let PCROSS_EMPTY = prove
(`(!s. (s PCROSS {}) :A^(M,N)finite_sum->bool = {}) /\
(!t. ({} PCROSS t) :A^(M,N)finite_sum->bool = {})`,
REWRITE_TAC[PCROSS_EQ_EMPTY]);;
let PCROSS_SING = prove
(`!(x:A^M) (y:A^N). {x} PCROSS {y} = {pastecart x y}`,
REWRITE_TAC[EXTENSION; FORALL_PASTECART; IN_SING; PASTECART_IN_PCROSS;
PASTECART_INJ]);;
let SUBSET_PCROSS = prove
(`!(s:A^M->bool) (t:A^N->bool) s' t'.
s PCROSS t SUBSET s' PCROSS t' <=>
s = {} \/ t = {} \/ s SUBSET s' /\ t SUBSET t'`,
SIMP_TAC[PCROSS; EXTENSION; IN_ELIM_PASTECART_THM; SUBSET;
FORALL_PASTECART; PASTECART_IN_PCROSS; NOT_IN_EMPTY] THEN MESON_TAC[]);;
let PCROSS_MONO = prove
(`!(s:A^M->bool) (t:A^N->bool) s' t'.
s SUBSET s' /\ t SUBSET t' ==> s PCROSS t SUBSET s' PCROSS t'`,
SIMP_TAC[SUBSET_PCROSS]);;
let PCROSS_EQ = prove
(`!s s':real^M->bool t t':real^N->bool.
s PCROSS t = s' PCROSS t' <=>
(s = {} \/ t = {}) /\ (s' = {} \/ t' = {}) \/ s = s' /\ t = t'`,
REWRITE_TAC[GSYM SUBSET_ANTISYM_EQ; SUBSET_PCROSS] THEN SET_TAC[]);;
let UNIV_PCROSS_UNIV = prove
(`(:A^M) PCROSS (:A^N) = (:A^(M,N)finite_sum)`,
REWRITE_TAC[EXTENSION; FORALL_PASTECART; PASTECART_IN_PCROSS; IN_UNIV]);;
let HAS_SIZE_PCROSS = prove
(`!(s:A^M->bool) (t:A^N->bool) m n.
s HAS_SIZE m /\ t HAS_SIZE n ==> (s PCROSS t) HAS_SIZE (m * n)`,
REPEAT GEN_TAC THEN DISCH_TAC THEN
FIRST_ASSUM(MP_TAC o MATCH_MP HAS_SIZE_PRODUCT) THEN
MATCH_MP_TAC EQ_IMP THEN SPEC_TAC(`m * n:num`,`k:num`) THEN
MATCH_MP_TAC BIJECTIONS_HAS_SIZE_EQ THEN
EXISTS_TAC `\(x:A^M,y:A^N). pastecart x y` THEN
EXISTS_TAC `\z:A^(M,N)finite_sum. fstcart z,sndcart z` THEN
REWRITE_TAC[FORALL_IN_GSPEC; PASTECART_IN_PCROSS] THEN
REWRITE_TAC[IN_ELIM_PAIR_THM; PASTECART_FST_SND] THEN
REWRITE_TAC[FORALL_IN_PCROSS; FSTCART_PASTECART; SNDCART_PASTECART]);;
let FINITE_PCROSS = prove
(`!(s:A^M->bool) (t:A^N->bool).
FINITE s /\ FINITE t ==> FINITE(s PCROSS t)`,
MESON_TAC[REWRITE_RULE[HAS_SIZE] HAS_SIZE_PCROSS]);;
let FINITE_PCROSS_EQ = prove
(`!(s:A^M->bool) (t:A^N->bool).
FINITE(s PCROSS t) <=> s = {} \/ t = {} \/ FINITE s /\ FINITE t`,
REPEAT GEN_TAC THEN
MAP_EVERY ASM_CASES_TAC [`s:A^M->bool = {}`; `t:A^N->bool = {}`] THEN
ASM_REWRITE_TAC[PCROSS_EMPTY; FINITE_EMPTY] THEN
EQ_TAC THEN SIMP_TAC[FINITE_PCROSS] THEN REPEAT STRIP_TAC THEN
MATCH_MP_TAC FINITE_SUBSET THENL
[EXISTS_TAC `IMAGE fstcart ((s PCROSS t):A^(M,N)finite_sum->bool)`;
EXISTS_TAC `IMAGE sndcart ((s PCROSS t):A^(M,N)finite_sum->bool)`] THEN
ASM_SIMP_TAC[FINITE_IMAGE; SUBSET; IN_IMAGE; EXISTS_PASTECART] THEN
REWRITE_TAC[PASTECART_IN_PCROSS; FSTCART_PASTECART; SNDCART_PASTECART] THEN
ASM SET_TAC[]);;
let IMAGE_FSTCART_PCROSS = prove
(`!s:real^M->bool t:real^N->bool.
IMAGE fstcart (s PCROSS t) = if t = {} then {} else s`,
REPEAT GEN_TAC THEN COND_CASES_TAC THEN
ASM_REWRITE_TAC[PCROSS_EMPTY; IMAGE_CLAUSES] THEN
REWRITE_TAC[EXTENSION; IN_IMAGE] THEN ONCE_REWRITE_TAC[CONJ_SYM] THEN
REWRITE_TAC[EXISTS_IN_PCROSS; FSTCART_PASTECART] THEN ASM SET_TAC[]);;
let IMAGE_SNDCART_PCROSS = prove
(`!s:real^M->bool t:real^N->bool.
IMAGE sndcart (s PCROSS t) = if s = {} then {} else t`,
REPEAT GEN_TAC THEN COND_CASES_TAC THEN
ASM_REWRITE_TAC[PCROSS_EMPTY; IMAGE_CLAUSES] THEN
REWRITE_TAC[EXTENSION; IN_IMAGE] THEN ONCE_REWRITE_TAC[CONJ_SYM] THEN
REWRITE_TAC[EXISTS_IN_PCROSS; SNDCART_PASTECART] THEN ASM SET_TAC[]);;
let PCROSS_INTER = prove
(`(!(s:A^M->bool) (t:A^N->bool) u.
s PCROSS (t INTER u) = (s PCROSS t) INTER (s PCROSS u)) /\
(!(s:A^M->bool) t (u:A^N->bool).
(s INTER t) PCROSS u = (s PCROSS u) INTER (t PCROSS u))`,
REWRITE_TAC[EXTENSION; FORALL_PASTECART; IN_INTER; PASTECART_IN_PCROSS] THEN
REPEAT STRIP_TAC THEN CONV_TAC TAUT);;
let PCROSS_UNION = prove
(`(!(s:A^M->bool) (t:A^N->bool) u.
s PCROSS (t UNION u) = (s PCROSS t) UNION (s PCROSS u)) /\
(!(s:A^M->bool) t (u:A^N->bool).
(s UNION t) PCROSS u = (s PCROSS u) UNION (t PCROSS u))`,
REWRITE_TAC[EXTENSION; FORALL_PASTECART; IN_UNION; PASTECART_IN_PCROSS] THEN
REPEAT STRIP_TAC THEN CONV_TAC TAUT);;
let PCROSS_DIFF = prove
(`(!(s:A^M->bool) (t:A^N->bool) u.
s PCROSS (t DIFF u) = (s PCROSS t) DIFF (s PCROSS u)) /\
(!(s:A^M->bool) t (u:A^N->bool).
(s DIFF t) PCROSS u = (s PCROSS u) DIFF (t PCROSS u))`,
REWRITE_TAC[EXTENSION; FORALL_PASTECART; IN_DIFF; PASTECART_IN_PCROSS] THEN
REPEAT STRIP_TAC THEN CONV_TAC TAUT);;
let INTER_PCROSS = prove
(`!(s:A^M->bool) s' (t:A^N->bool) t'.
(s PCROSS t) INTER (s' PCROSS t') = (s INTER s') PCROSS (t INTER t')`,
REWRITE_TAC[EXTENSION; IN_INTER; FORALL_PASTECART; PASTECART_IN_PCROSS] THEN
CONV_TAC TAUT);;
let PCROSS_UNIONS_UNIONS,PCROSS_UNIONS = (CONJ_PAIR o prove)
(`(!f g. ((UNIONS f) PCROSS (UNIONS g)) :A^(M,N)finite_sum->bool =
UNIONS {s PCROSS t | s IN f /\ t IN g}) /\
(!s f. (s PCROSS (UNIONS f)) :A^(M,N)finite_sum->bool =
UNIONS {s PCROSS t | t IN f}) /\
(!f t. ((UNIONS f) PCROSS t) :A^(M,N)finite_sum->bool =
UNIONS {s PCROSS t | s IN f})`,
REWRITE_TAC[UNIONS_GSPEC; EXTENSION; FORALL_PASTECART; IN_ELIM_THM;
PASTECART_IN_PCROSS] THEN
SET_TAC[]);;
let PCROSS_INTERS_INTERS,PCROSS_INTERS = (CONJ_PAIR o prove)
(`(!f g. ((INTERS f) PCROSS (INTERS g)) :A^(M,N)finite_sum->bool =
if f = {} then INTERS {UNIV PCROSS t | t IN g}
else if g = {} then INTERS {s PCROSS UNIV | s IN f}
else INTERS {s PCROSS t | s IN f /\ t IN g}) /\
(!s f. (s PCROSS (INTERS f)) :A^(M,N)finite_sum->bool =
if f = {} then s PCROSS UNIV else INTERS {s PCROSS t | t IN f}) /\
(!f t. ((INTERS f) PCROSS t) :A^(M,N)finite_sum->bool =
if f = {} then UNIV PCROSS t else INTERS {s PCROSS t | s IN f})`,
REPEAT STRIP_TAC THEN REPEAT (COND_CASES_TAC THEN REWRITE_TAC[]) THEN
ASM_REWRITE_TAC[INTERS_GSPEC; EXTENSION; FORALL_PASTECART; IN_ELIM_THM;
PASTECART_IN_PCROSS; NOT_IN_EMPTY] THEN
ASM SET_TAC[]);;
let DISJOINT_PCROSS = prove
(`!s:A^M->bool t:A^N->bool s' t'.
DISJOINT (s PCROSS t) (s' PCROSS t') <=>
DISJOINT s s' \/ DISJOINT t t'`,
REWRITE_TAC[DISJOINT; INTER_PCROSS; PCROSS_EQ_EMPTY]);;