-
Notifications
You must be signed in to change notification settings - Fork 77
/
calc_rat.ml
673 lines (607 loc) · 28 KB
/
calc_rat.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
(* ========================================================================= *)
(* Calculation with rational-valued reals. *)
(* *)
(* John Harrison, University of Cambridge Computer Laboratory *)
(* *)
(* (c) Copyright, University of Cambridge 1998 *)
(* (c) Copyright, John Harrison 1998-2007 *)
(* ========================================================================= *)
needs "real.ml";;
(* ------------------------------------------------------------------------- *)
(* Constant for decimal fractions written #xxx.yyy *)
(* ------------------------------------------------------------------------- *)
let DECIMAL = new_definition
`DECIMAL x y = &x / &y`;;
(* ------------------------------------------------------------------------- *)
(* Various handy lemmas. *)
(* ------------------------------------------------------------------------- *)
let RAT_LEMMA1 = prove
(`~(y1 = &0) /\ ~(y2 = &0) ==>
((x1 / y1) + (x2 / y2) = (x1 * y2 + x2 * y1) * inv(y1) * inv(y2))`,
STRIP_TAC THEN REWRITE_TAC[real_div; REAL_ADD_RDISTRIB] THEN BINOP_TAC THENL
[REWRITE_TAC[GSYM REAL_MUL_ASSOC] THEN AP_TERM_TAC THEN ONCE_REWRITE_TAC
[AC REAL_MUL_AC `a * b * c = (b * a) * c`];
REWRITE_TAC[REAL_MUL_ASSOC] THEN AP_THM_TAC THEN AP_TERM_TAC] THEN
GEN_REWRITE_TAC LAND_CONV [GSYM REAL_MUL_RID] THEN
REWRITE_TAC[GSYM REAL_MUL_ASSOC] THEN REWRITE_TAC[REAL_EQ_MUL_LCANCEL] THEN
DISJ2_TAC THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC REAL_MUL_RINV THEN
ASM_REWRITE_TAC[]);;
let RAT_LEMMA2 = prove
(`&0 < y1 /\ &0 < y2 ==>
((x1 / y1) + (x2 / y2) = (x1 * y2 + x2 * y1) * inv(y1) * inv(y2))`,
DISCH_TAC THEN MATCH_MP_TAC RAT_LEMMA1 THEN POP_ASSUM MP_TAC THEN
ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN
REWRITE_TAC[DE_MORGAN_THM] THEN STRIP_TAC THEN
ASM_REWRITE_TAC[REAL_LT_REFL]);;
let RAT_LEMMA3 = prove
(`&0 < y1 /\ &0 < y2 ==>
((x1 / y1) - (x2 / y2) = (x1 * y2 - x2 * y1) * inv(y1) * inv(y2))`,
DISCH_THEN(MP_TAC o GEN_ALL o MATCH_MP RAT_LEMMA2) THEN
REWRITE_TAC[real_div] THEN DISCH_TAC THEN
ASM_REWRITE_TAC[real_sub; GSYM REAL_MUL_LNEG]);;
let RAT_LEMMA4 = prove
(`&0 < y1 /\ &0 < y2 ==> (x1 / y1 <= x2 / y2 <=> x1 * y2 <= x2 * y1)`,
let lemma = prove
(`&0 < y ==> (&0 <= x * y <=> &0 <= x)`,
DISCH_TAC THEN EQ_TAC THEN DISCH_TAC THENL
[SUBGOAL_THEN `&0 <= x * (y * inv y)` MP_TAC THENL
[REWRITE_TAC[REAL_MUL_ASSOC] THEN MATCH_MP_TAC REAL_LE_MUL THEN
ASM_REWRITE_TAC[] THEN MATCH_MP_TAC REAL_LE_INV THEN
MATCH_MP_TAC REAL_LT_IMP_LE THEN ASM_REWRITE_TAC[];
SUBGOAL_THEN `y * inv y = &1` (fun th ->
REWRITE_TAC[th; REAL_MUL_RID]) THEN
MATCH_MP_TAC REAL_MUL_RINV THEN
UNDISCH_TAC `&0 < y` THEN REAL_ARITH_TAC];
MATCH_MP_TAC REAL_LE_MUL THEN ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC REAL_LT_IMP_LE THEN ASM_REWRITE_TAC[]]) in
ONCE_REWRITE_TAC[CONJ_SYM] THEN DISCH_TAC THEN
ONCE_REWRITE_TAC[REAL_ARITH `a <= b <=> &0 <= b - a`] THEN
FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP RAT_LEMMA3 th]) THEN
MATCH_MP_TAC EQ_TRANS THEN
EXISTS_TAC `&0 <= (x2 * y1 - x1 * y2) * inv y2` THEN
REWRITE_TAC[REAL_MUL_ASSOC] THEN CONJ_TAC THEN
MATCH_MP_TAC lemma THEN MATCH_MP_TAC REAL_LT_INV THEN
ASM_REWRITE_TAC[]);;
let RAT_LEMMA5 = prove
(`&0 < y1 /\ &0 < y2 ==> ((x1 / y1 = x2 / y2) <=> (x1 * y2 = x2 * y1))`,
REPEAT DISCH_TAC THEN REWRITE_TAC[GSYM REAL_LE_ANTISYM] THEN
MATCH_MP_TAC(TAUT `(a <=> a') /\ (b <=> b') ==> (a /\ b <=> a' /\ b')`) THEN
CONJ_TAC THEN MATCH_MP_TAC RAT_LEMMA4 THEN ASM_REWRITE_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Create trivial rational from integer or decimal, and postconvert back. *)
(* ------------------------------------------------------------------------- *)
let REAL_INT_RAT_CONV =
let pth = prove
(`(&x = &x / &1) /\
(--(&x) = --(&x) / &1) /\
(DECIMAL x y = &x / &y) /\
(--(DECIMAL x y) = --(&x) / &y)`,
REWRITE_TAC[REAL_DIV_1; DECIMAL] THEN
REWRITE_TAC[real_div; REAL_MUL_LNEG]) in
TRY_CONV(GEN_REWRITE_CONV I [pth]);;
(* ------------------------------------------------------------------------- *)
(* Relational operations. *)
(* ------------------------------------------------------------------------- *)
let REAL_RAT_LE_CONV =
let pth = prove
(`&0 < y1 ==> &0 < y2 ==> (x1 / y1 <= x2 / y2 <=> x1 * y2 <= x2 * y1)`,
REWRITE_TAC[IMP_IMP; RAT_LEMMA4])
and x1 = `x1:real` and x2 = `x2:real`
and y1 = `y1:real` and y2 = `y2:real`
and dest_le = dest_binop `(<=)`
and dest_div = dest_binop `(/)` in
let RAW_REAL_RAT_LE_CONV tm =
let l,r = dest_le tm in
let lx,ly = dest_div l
and rx,ry = dest_div r in
let th0 = INST [lx,x1; ly,y1; rx,x2; ry,y2] pth in
let th1 = funpow 2 (MP_CONV REAL_INT_LT_CONV) th0 in
let th2 = (BINOP_CONV REAL_INT_MUL_CONV THENC REAL_INT_LE_CONV)
(rand(concl th1)) in
TRANS th1 th2 in
BINOP_CONV REAL_INT_RAT_CONV THENC RAW_REAL_RAT_LE_CONV;;
let REAL_RAT_LT_CONV =
let pth = prove
(`&0 < y1 ==> &0 < y2 ==> (x1 / y1 < x2 / y2 <=> x1 * y2 < x2 * y1)`,
REWRITE_TAC[IMP_IMP] THEN
GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [GSYM REAL_NOT_LE] THEN
SIMP_TAC[TAUT `(~a <=> ~b) <=> (a <=> b)`; RAT_LEMMA4])
and x1 = `x1:real` and x2 = `x2:real`
and y1 = `y1:real` and y2 = `y2:real`
and dest_lt = dest_binop `(<)`
and dest_div = dest_binop `(/)` in
let RAW_REAL_RAT_LT_CONV tm =
let l,r = dest_lt tm in
let lx,ly = dest_div l
and rx,ry = dest_div r in
let th0 = INST [lx,x1; ly,y1; rx,x2; ry,y2] pth in
let th1 = funpow 2 (MP_CONV REAL_INT_LT_CONV) th0 in
let th2 = (BINOP_CONV REAL_INT_MUL_CONV THENC REAL_INT_LT_CONV)
(rand(concl th1)) in
TRANS th1 th2 in
BINOP_CONV REAL_INT_RAT_CONV THENC RAW_REAL_RAT_LT_CONV;;
let REAL_RAT_GE_CONV =
GEN_REWRITE_CONV I [real_ge] THENC REAL_RAT_LE_CONV;;
let REAL_RAT_GT_CONV =
GEN_REWRITE_CONV I [real_gt] THENC REAL_RAT_LT_CONV;;
let REAL_RAT_EQ_CONV =
let pth = prove
(`&0 < y1 ==> &0 < y2 ==> ((x1 / y1 = x2 / y2) <=> (x1 * y2 = x2 * y1))`,
REWRITE_TAC[IMP_IMP; RAT_LEMMA5])
and x1 = `x1:real` and x2 = `x2:real`
and y1 = `y1:real` and y2 = `y2:real`
and dest_eq = dest_binop `(=) :real->real->bool`
and dest_div = dest_binop `(/)` in
let RAW_REAL_RAT_EQ_CONV tm =
let l,r = dest_eq tm in
let lx,ly = dest_div l
and rx,ry = dest_div r in
let th0 = INST [lx,x1; ly,y1; rx,x2; ry,y2] pth in
let th1 = funpow 2 (MP_CONV REAL_INT_LT_CONV) th0 in
let th2 = (BINOP_CONV REAL_INT_MUL_CONV THENC REAL_INT_EQ_CONV)
(rand(concl th1)) in
TRANS th1 th2 in
BINOP_CONV REAL_INT_RAT_CONV THENC RAW_REAL_RAT_EQ_CONV;;
let REAL_RAT_SGN_CONV =
GEN_REWRITE_CONV I [real_sgn] THENC
RATOR_CONV(LAND_CONV REAL_RAT_LT_CONV) THENC
(GEN_REWRITE_CONV I [CONJUNCT1(SPEC_ALL COND_CLAUSES)] ORELSEC
(GEN_REWRITE_CONV I [CONJUNCT2(SPEC_ALL COND_CLAUSES)] THENC
RATOR_CONV(LAND_CONV REAL_RAT_LT_CONV) THENC
GEN_REWRITE_CONV I [COND_CLAUSES]));;
(* ------------------------------------------------------------------------- *)
(* The unary operations; all easy. *)
(* ------------------------------------------------------------------------- *)
let REAL_RAT_NEG_CONV =
let pth = prove
(`(--(&0) = &0) /\
(--(--(&n)) = &n) /\
(--(&m / &n) = --(&m) / &n) /\
(--(--(&m) / &n) = &m / &n) /\
(--(DECIMAL m n) = --(&m) / &n)`,
REWRITE_TAC[real_div; REAL_INV_NEG; REAL_MUL_LNEG; REAL_NEG_NEG;
REAL_NEG_0; DECIMAL])
and ptm = `(--)` in
let conv1 = GEN_REWRITE_CONV I [pth] in
fun tm -> try conv1 tm
with Failure _ -> try
let l,r = dest_comb tm in
if l = ptm && is_realintconst r && dest_realintconst r >/ num_0
then REFL tm
else fail()
with Failure _ -> failwith "REAL_RAT_NEG_CONV";;
let REAL_RAT_ABS_CONV =
let pth = prove
(`(abs(&n) = &n) /\
(abs(--(&n)) = &n) /\
(abs(&m / &n) = &m / &n) /\
(abs(--(&m) / &n) = &m / &n) /\
(abs(DECIMAL m n) = &m / &n) /\
(abs(--(DECIMAL m n)) = &m / &n)`,
REWRITE_TAC[DECIMAL; REAL_ABS_DIV; REAL_ABS_NEG; REAL_ABS_NUM]) in
GEN_REWRITE_CONV I [pth];;
let REAL_RAT_INV_CONV =
let pth1 = prove
(`(inv(&0) = &0) /\
(inv(&1) = &1) /\
(inv(-- &1) = --(&1)) /\
(inv(&1 / &n) = &n) /\
(inv(-- &1 / &n) = -- &n)`,
REWRITE_TAC[REAL_INV_0; REAL_INV_1; REAL_INV_NEG;
REAL_INV_DIV; REAL_DIV_1] THEN
REWRITE_TAC[real_div; REAL_INV_NEG; REAL_MUL_RNEG; REAL_INV_1;
REAL_MUL_RID])
and pth2 = prove
(`(inv(&n) = &1 / &n) /\
(inv(--(&n)) = --(&1) / &n) /\
(inv(&m / &n) = &n / &m) /\
(inv(--(&m) / &n) = --(&n) / &m) /\
(inv(DECIMAL m n) = &n / &m) /\
(inv(--(DECIMAL m n)) = --(&n) / &m)`,
REWRITE_TAC[DECIMAL; REAL_INV_DIV] THEN
REWRITE_TAC[REAL_INV_NEG; real_div; REAL_MUL_RNEG; REAL_MUL_AC;
REAL_MUL_LID; REAL_MUL_LNEG; REAL_INV_MUL; REAL_INV_INV]) in
GEN_REWRITE_CONV I [pth1] ORELSEC
GEN_REWRITE_CONV I [pth2];;
(* ------------------------------------------------------------------------- *)
(* Addition. *)
(* ------------------------------------------------------------------------- *)
let REAL_RAT_ADD_CONV =
let pth = prove
(`&0 < y1 ==> &0 < y2 ==> &0 < y3 ==>
((x1 * y2 + x2 * y1) * y3 = x3 * y1 * y2)
==> (x1 / y1 + x2 / y2 = x3 / y3)`,
REPEAT DISCH_TAC THEN
MP_TAC RAT_LEMMA2 THEN
ASM_REWRITE_TAC[] THEN
DISCH_THEN SUBST1_TAC THEN
REWRITE_TAC[GSYM REAL_INV_MUL; GSYM real_div] THEN
SUBGOAL_THEN `&0 < y1 * y2 /\ &0 < y3` MP_TAC THENL
[ASM_REWRITE_TAC[] THEN MATCH_MP_TAC REAL_LT_MUL THEN
ASM_REWRITE_TAC[];
DISCH_THEN(fun th -> ASM_REWRITE_TAC[MATCH_MP RAT_LEMMA5 th])])
and dest_divop = dest_binop `(/)`
and dest_addop = dest_binop `(+)`
and x1 = `x1:real` and x2 = `x2:real` and x3 = `x3:real`
and y1 = `y1:real` and y2 = `y2:real` and y3 = `y3:real` in
let RAW_REAL_RAT_ADD_CONV tm =
let r1,r2 = dest_addop tm in
let x1',y1' = dest_divop r1
and x2',y2' = dest_divop r2 in
let x1n = dest_realintconst x1' and y1n = dest_realintconst y1'
and x2n = dest_realintconst x2' and y2n = dest_realintconst y2' in
let x3n = x1n */ y2n +/ x2n */ y1n
and y3n = y1n */ y2n in
let d = gcd_num x3n y3n in
let x3n' = quo_num x3n d and y3n' = quo_num y3n d in
let x3n'',y3n'' = if y3n' >/ num 0 then x3n',y3n'
else minus_num x3n',minus_num y3n' in
let x3' = mk_realintconst x3n'' and y3' = mk_realintconst y3n'' in
let th0 = INST [x1',x1; y1',y1; x2',x2; y2',y2; x3',x3; y3',y3] pth in
let th1 = funpow 3 (MP_CONV REAL_INT_LT_CONV) th0 in
let tm2,tm3 = dest_eq(fst(dest_imp(concl th1))) in
let th2 = (LAND_CONV (BINOP_CONV REAL_INT_MUL_CONV THENC
REAL_INT_ADD_CONV) THENC
REAL_INT_MUL_CONV) tm2
and th3 = (RAND_CONV REAL_INT_MUL_CONV THENC REAL_INT_MUL_CONV) tm3 in
MP th1 (TRANS th2 (SYM th3)) in
BINOP_CONV REAL_INT_RAT_CONV THENC
RAW_REAL_RAT_ADD_CONV THENC TRY_CONV(GEN_REWRITE_CONV I [REAL_DIV_1]);;
(* ------------------------------------------------------------------------- *)
(* Subtraction. *)
(* ------------------------------------------------------------------------- *)
let REAL_RAT_SUB_CONV =
let pth = prove
(`x - y = x + --y`,
REWRITE_TAC[real_sub]) in
GEN_REWRITE_CONV I [pth] THENC
RAND_CONV REAL_RAT_NEG_CONV THENC REAL_RAT_ADD_CONV;;
(* ------------------------------------------------------------------------- *)
(* Multiplication. *)
(* ------------------------------------------------------------------------- *)
let REAL_RAT_MUL_CONV =
let pth_nocancel = prove
(`(x1 / y1) * (x2 / y2) = (x1 * x2) / (y1 * y2)`,
REWRITE_TAC[real_div; REAL_INV_MUL; REAL_MUL_AC])
and pth_cancel = prove
(`~(d1 = &0) /\ ~(d2 = &0) /\
(d1 * u1 = x1) /\ (d2 * u2 = x2) /\
(d2 * v1 = y1) /\ (d1 * v2 = y2)
==> ((x1 / y1) * (x2 / y2) = (u1 * u2) / (v1 * v2))`,
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN (SUBST1_TAC o SYM)) THEN
ASM_REWRITE_TAC[real_div; REAL_INV_MUL] THEN
ONCE_REWRITE_TAC[AC REAL_MUL_AC
`((d1 * u1) * (id2 * iv1)) * ((d2 * u2) * id1 * iv2) =
(u1 * u2) * (iv1 * iv2) * (id2 * d2) * (id1 * d1)`] THEN
ASM_SIMP_TAC[REAL_MUL_LINV; REAL_MUL_RID])
and dest_divop = dest_binop `(/)`
and dest_mulop = dest_binop `(*)`
and x1 = `x1:real` and x2 = `x2:real`
and y1 = `y1:real` and y2 = `y2:real`
and u1 = `u1:real` and u2 = `u2:real`
and v1 = `v1:real` and v2 = `v2:real`
and d1 = `d1:real` and d2 = `d2:real` in
let RAW_REAL_RAT_MUL_CONV tm =
let r1,r2 = dest_mulop tm in
let x1',y1' = dest_divop r1
and x2',y2' = dest_divop r2 in
let x1n = dest_realintconst x1' and y1n = dest_realintconst y1'
and x2n = dest_realintconst x2' and y2n = dest_realintconst y2' in
let d1n = gcd_num x1n y2n
and d2n = gcd_num x2n y1n in
if d1n = num_1 && d2n = num_1 then
let th0 = INST [x1',x1; y1',y1; x2',x2; y2',y2] pth_nocancel in
let th1 = BINOP_CONV REAL_INT_MUL_CONV (rand(concl th0)) in
TRANS th0 th1
else
let u1n = quo_num x1n d1n
and u2n = quo_num x2n d2n
and v1n = quo_num y1n d2n
and v2n = quo_num y2n d1n in
let u1' = mk_realintconst u1n
and u2' = mk_realintconst u2n
and v1' = mk_realintconst v1n
and v2' = mk_realintconst v2n
and d1' = mk_realintconst d1n
and d2' = mk_realintconst d2n in
let th0 = INST [x1',x1; y1',y1; x2',x2; y2',y2;
u1',u1; v1',v1; u2',u2; v2',v2; d1',d1; d2',d2]
pth_cancel in
let th1 = EQT_ELIM(REAL_INT_REDUCE_CONV(lhand(concl th0))) in
let th2 = MP th0 th1 in
let th3 = BINOP_CONV REAL_INT_MUL_CONV (rand(concl th2)) in
TRANS th2 th3 in
BINOP_CONV REAL_INT_RAT_CONV THENC
RAW_REAL_RAT_MUL_CONV THENC TRY_CONV(GEN_REWRITE_CONV I [REAL_DIV_1]);;
(* ------------------------------------------------------------------------- *)
(* Division. *)
(* ------------------------------------------------------------------------- *)
let REAL_RAT_DIV_CONV =
let pth = prove
(`x / y = x * inv(y)`,
REWRITE_TAC[real_div]) in
GEN_REWRITE_CONV I [pth] THENC
RAND_CONV REAL_RAT_INV_CONV THENC REAL_RAT_MUL_CONV;;
(* ------------------------------------------------------------------------- *)
(* Powers. *)
(* ------------------------------------------------------------------------- *)
let REAL_RAT_POW_CONV =
let pth = prove
(`(x / y) pow n = (x pow n) / (y pow n)`,
REWRITE_TAC[REAL_POW_DIV]) in
REAL_INT_POW_CONV ORELSEC
(LAND_CONV REAL_INT_RAT_CONV THENC
GEN_REWRITE_CONV I [pth] THENC
BINOP_CONV REAL_INT_POW_CONV);;
(* ------------------------------------------------------------------------- *)
(* Max and min. *)
(* ------------------------------------------------------------------------- *)
let REAL_RAT_MAX_CONV =
REWR_CONV real_max THENC
RATOR_CONV(RATOR_CONV(RAND_CONV REAL_RAT_LE_CONV)) THENC
GEN_REWRITE_CONV I [COND_CLAUSES];;
let REAL_RAT_MIN_CONV =
REWR_CONV real_min THENC
RATOR_CONV(RATOR_CONV(RAND_CONV REAL_RAT_LE_CONV)) THENC
GEN_REWRITE_CONV I [COND_CLAUSES];;
(* ------------------------------------------------------------------------- *)
(* Everything. *)
(* ------------------------------------------------------------------------- *)
let REAL_RAT_RED_CONV =
let gconv_net = itlist (uncurry net_of_conv)
[`x <= y`,REAL_RAT_LE_CONV;
`x < y`,REAL_RAT_LT_CONV;
`x >= y`,REAL_RAT_GE_CONV;
`x > y`,REAL_RAT_GT_CONV;
`x:real = y`,REAL_RAT_EQ_CONV;
`--x`,CHANGED_CONV REAL_RAT_NEG_CONV;
`real_sgn(x)`,REAL_RAT_SGN_CONV;
`abs(x)`,REAL_RAT_ABS_CONV;
`inv(x)`,REAL_RAT_INV_CONV;
`x + y`,REAL_RAT_ADD_CONV;
`x - y`,REAL_RAT_SUB_CONV;
`x * y`,REAL_RAT_MUL_CONV;
`x / y`,CHANGED_CONV REAL_RAT_DIV_CONV;
`x pow n`,REAL_RAT_POW_CONV;
`max x y`,REAL_RAT_MAX_CONV;
`min x y`,REAL_RAT_MIN_CONV]
(basic_net()) in
REWRITES_CONV gconv_net;;
let REAL_RAT_REDUCE_CONV = DEPTH_CONV REAL_RAT_RED_CONV;;
(* ------------------------------------------------------------------------- *)
(* Real normalizer dealing with rational constants. *)
(* ------------------------------------------------------------------------- *)
let REAL_POLY_NEG_CONV,REAL_POLY_ADD_CONV,REAL_POLY_SUB_CONV,
REAL_POLY_MUL_CONV,REAL_POLY_POW_CONV,REAL_POLY_CONV =
SEMIRING_NORMALIZERS_CONV REAL_POLY_CLAUSES REAL_POLY_NEG_CLAUSES
(is_ratconst,
REAL_RAT_ADD_CONV,REAL_RAT_MUL_CONV,REAL_RAT_POW_CONV)
(<);;
(* ------------------------------------------------------------------------- *)
(* Extend normalizer to handle "inv" and division by rational constants, and *)
(* normalize inside nested "max", "min" and "abs" terms. *)
(* ------------------------------------------------------------------------- *)
let REAL_POLY_CONV =
let neg_tm = `(--):real->real`
and inv_tm = `inv:real->real`
and add_tm = `(+):real->real->real`
and sub_tm = `(-):real->real->real`
and mul_tm = `(*):real->real->real`
and div_tm = `(/):real->real->real`
and pow_tm = `(pow):real->num->real`
and abs_tm = `abs:real->real`
and max_tm = `max:real->real->real`
and min_tm = `min:real->real->real`
and div_conv = REWR_CONV real_div in
let rec REAL_POLY_CONV tm =
if not(is_comb tm) || is_ratconst tm then REFL tm else
let lop,r = dest_comb tm in
if lop = neg_tm then
let th1 = AP_TERM lop (REAL_POLY_CONV r) in
TRANS th1 (REAL_POLY_NEG_CONV (rand(concl th1)))
else if lop = inv_tm then
let th1 = AP_TERM lop (REAL_POLY_CONV r) in
TRANS th1 (TRY_CONV REAL_RAT_INV_CONV (rand(concl th1)))
else if lop = abs_tm then
AP_TERM lop (REAL_POLY_CONV r)
else if not(is_comb lop) then REFL tm else
let op,l = dest_comb lop in
if op = pow_tm then
let th1 = AP_THM (AP_TERM op (REAL_POLY_CONV l)) r in
TRANS th1 (TRY_CONV REAL_POLY_POW_CONV (rand(concl th1)))
else if op = add_tm || op = mul_tm || op = sub_tm then
let th1 = MK_COMB(AP_TERM op (REAL_POLY_CONV l),
REAL_POLY_CONV r) in
let fn = if op = add_tm then REAL_POLY_ADD_CONV
else if op = mul_tm then REAL_POLY_MUL_CONV
else REAL_POLY_SUB_CONV in
TRANS th1 (fn (rand(concl th1)))
else if op = div_tm then
let th1 = div_conv tm in
TRANS th1 (REAL_POLY_CONV (rand(concl th1)))
else if op = min_tm || op = max_tm then
MK_COMB(AP_TERM op (REAL_POLY_CONV l),REAL_POLY_CONV r)
else REFL tm in
REAL_POLY_CONV;;
(* ------------------------------------------------------------------------- *)
(* Basic ring and ideal conversions. *)
(* ------------------------------------------------------------------------- *)
let REAL_RING,real_ideal_cofactors =
let REAL_INTEGRAL = prove
(`(!x. &0 * x = &0) /\
(!x y z. (x + y = x + z) <=> (y = z)) /\
(!w x y z. (w * y + x * z = w * z + x * y) <=> (w = x) \/ (y = z))`,
REWRITE_TAC[MULT_CLAUSES; EQ_ADD_LCANCEL] THEN
REWRITE_TAC[GSYM REAL_OF_NUM_EQ;
GSYM REAL_OF_NUM_ADD; GSYM REAL_OF_NUM_MUL] THEN
ONCE_REWRITE_TAC[GSYM REAL_SUB_0] THEN
REWRITE_TAC[GSYM REAL_ENTIRE] THEN REAL_ARITH_TAC)
and REAL_RABINOWITSCH = prove
(`!x y:real. ~(x = y) <=> ?z. (x - y) * z = &1`,
REPEAT GEN_TAC THEN
GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [GSYM REAL_SUB_0] THEN
MESON_TAC[REAL_MUL_RINV; REAL_MUL_LZERO; REAL_ARITH `~(&1 = &0)`])
and init = GEN_REWRITE_CONV ONCE_DEPTH_CONV [DECIMAL]
and real_ty = `:real` in
let pure,ideal =
RING_AND_IDEAL_CONV
(rat_of_term,term_of_rat,REAL_RAT_EQ_CONV,
`(--):real->real`,`(+):real->real->real`,`(-):real->real->real`,
`(inv):real->real`,`(*):real->real->real`,`(/):real->real->real`,
`(pow):real->num->real`,
REAL_INTEGRAL,REAL_RABINOWITSCH,REAL_POLY_CONV) in
(fun tm -> let th = init tm in EQ_MP (SYM th) (pure(rand(concl th)))),
(fun tms tm -> if forall (fun t -> type_of t = real_ty) (tm::tms)
then ideal tms tm
else failwith
"real_ideal_cofactors: not all terms have type :real");;
(* ------------------------------------------------------------------------- *)
(* Conversion for ideal membership. *)
(* ------------------------------------------------------------------------- *)
let REAL_IDEAL_CONV =
let mk_add = mk_binop `( + ):real->real->real`
and mk_mul = mk_binop `( * ):real->real->real` in
fun tms tm ->
let cfs = real_ideal_cofactors tms tm in
let tm' = end_itlist mk_add (map2 mk_mul cfs tms) in
let th = REAL_POLY_CONV tm and th' = REAL_POLY_CONV tm' in
TRANS th (SYM th');;
(* ------------------------------------------------------------------------- *)
(* Further specialize GEN_REAL_ARITH and REAL_ARITH (final versions). *)
(* ------------------------------------------------------------------------- *)
let GEN_REAL_ARITH PROVER =
GEN_REAL_ARITH
(term_of_rat,
REAL_RAT_EQ_CONV,REAL_RAT_GE_CONV,REAL_RAT_GT_CONV,
REAL_POLY_CONV,REAL_POLY_NEG_CONV,REAL_POLY_ADD_CONV,REAL_POLY_MUL_CONV,
PROVER);;
let REAL_ARITH =
let init = GEN_REWRITE_CONV ONCE_DEPTH_CONV [DECIMAL]
and pure = GEN_REAL_ARITH REAL_LINEAR_PROVER in
fun tm ->
try
let th = init tm in EQ_MP (SYM th) (pure(rand(concl th)))
with Failure m ->
failwith ("REAL_ARITH `" ^ (string_of_term tm) ^ "`: " ^ m);;
let REAL_ARITH_TAC = CONV_TAC REAL_ARITH;;
let ASM_REAL_ARITH_TAC =
REPEAT(FIRST_X_ASSUM(MP_TAC o check (not o is_forall o concl))) THEN
REAL_ARITH_TAC;;
(* ------------------------------------------------------------------------- *)
(* A few handy equivalential forms of transitivity. *)
(* ------------------------------------------------------------------------- *)
let REAL_LE_TRANS_LE = prove
(`!x y:real. x <= y <=> (!z. y <= z ==> x <= z)`,
MESON_TAC[REAL_LE_TRANS; REAL_LE_REFL]);;
let REAL_LE_TRANS_LTE = prove
(`!x y:real. x <= y <=> (!z. y < z ==> x <= z)`,
REPEAT GEN_TAC THEN EQ_TAC THENL [REAL_ARITH_TAC; ALL_TAC] THEN
DISCH_THEN(MP_TAC o SPEC `y + (x - y) / &2`) THEN REAL_ARITH_TAC);;
let REAL_LE_TRANS_LT = prove
(`!x y:real. x <= y <=> (!z. y < z ==> x < z)`,
REPEAT GEN_TAC THEN EQ_TAC THENL [REAL_ARITH_TAC; ALL_TAC] THEN
DISCH_THEN(MP_TAC o SPEC `y + (x - y) / &2`) THEN REAL_ARITH_TAC);;
(* ------------------------------------------------------------------------- *)
(* A simple "field" rule. *)
(* ------------------------------------------------------------------------- *)
let REAL_FIELD =
let norm_net =
itlist (net_of_thm false o SPEC_ALL)
[FORALL_SIMP; EXISTS_SIMP; real_div; REAL_INV_INV; REAL_INV_MUL;
REAL_POW_ADD]
(net_of_conv
`inv((x:real) pow n)`
(REWR_CONV(GSYM REAL_POW_INV) o check (is_numeral o rand o rand))
empty_net)
and easy_nz_conv =
LAND_CONV
(GEN_REWRITE_CONV TRY_CONV [MESON[REAL_POW_EQ_0; REAL_OF_NUM_EQ]
`~(x pow n = &0) <=>
~((x:real) = &0) \/ (&n = &0) \/ ~(x pow n = &0)`]) THENC
TRY_CONV(LAND_CONV REAL_RAT_REDUCE_CONV THENC
GEN_REWRITE_CONV I [TAUT `(T ==> p) <=> p`]) in
let prenex_conv =
TOP_DEPTH_CONV BETA_CONV THENC
NUM_REDUCE_CONV THENC
TOP_DEPTH_CONV(REWRITES_CONV norm_net) THENC
NNFC_CONV THENC DEPTH_BINOP_CONV `(/\)` CONDS_CELIM_CONV THENC
PRENEX_CONV THENC
ONCE_REWRITE_CONV[REAL_ARITH `x < y <=> x < y /\ ~(x = y)`]
and setup_conv = NNF_CONV THENC WEAK_CNF_CONV THENC CONJ_CANON_CONV
and core_rule t = try REAL_RING t with Failure _ -> REAL_ARITH t
and is_inv =
let inv_tm = `inv:real->real`
and is_div = is_binop `(/):real->real->real` in
fun tm -> (is_div tm || (is_comb tm && rator tm = inv_tm)) &&
not(is_ratconst(rand tm)) in
let BASIC_REAL_FIELD tm =
let is_freeinv t = is_inv t && free_in t tm in
let itms = setify(map rand (find_terms is_freeinv tm)) in
let hyps = map
(fun t -> CONV_RULE easy_nz_conv (SPEC t REAL_MUL_RINV)) itms in
let tm' = itlist (fun th t -> mk_imp(concl th,t)) hyps tm in
let th1 = setup_conv tm' in
let cjs = conjuncts(rand(concl th1)) in
let ths = map core_rule cjs in
let th2 = EQ_MP (SYM th1) (end_itlist CONJ ths) in
rev_itlist (C MP) hyps th2 in
fun tm ->
let th0 = prenex_conv tm in
let tm0 = rand(concl th0) in
let avs,bod = strip_forall tm0 in
let th1 = setup_conv bod in
let ths = map BASIC_REAL_FIELD (conjuncts(rand(concl th1))) in
EQ_MP (SYM th0) (GENL avs (EQ_MP (SYM th1) (end_itlist CONJ ths)));;
(* ------------------------------------------------------------------------- *)
(* Useful monotone mappings between R and (-1,1) *)
(* ------------------------------------------------------------------------- *)
let REAL_SHRINK_RANGE = prove
(`!x. abs(x / (&1 + abs x)) < &1`,
GEN_TAC THEN
REWRITE_TAC[REAL_ABS_DIV; REAL_ARITH `abs(&1 + abs x) = &1 + abs x`] THEN
SIMP_TAC[REAL_LT_LDIV_EQ; REAL_ARITH `&0 < &1 + abs x`] THEN
REAL_ARITH_TAC);;
let REAL_SHRINK_LT = prove
(`!x y. x / (&1 + abs x) < y / (&1 + abs y) <=> x < y`,
REPEAT GEN_TAC THEN MATCH_MP_TAC(REAL_ARITH
`(&0 < x' <=> &0 < x) /\ (&0 < y' <=> &0 < y) /\
(abs x' < abs y' <=> abs x < abs y) /\ (abs y' < abs x' <=> abs y < abs x)
==> (x' < y' <=> x < y)`) THEN
SIMP_TAC[REAL_LT_RDIV_EQ; REAL_ARITH `&0 < &1 + abs x`; REAL_MUL_LZERO] THEN
MAP_EVERY (fun t -> SPEC_TAC(t,t)) [`y:real`; `x:real`] THEN
REWRITE_TAC[MESON[] `(!x y. P x y /\ P y x) <=> (!x y. P x y)`] THEN
REPEAT GEN_TAC THEN
REWRITE_TAC[REAL_ABS_DIV; REAL_ARITH `abs(&1 + abs x) = &1 + abs x`] THEN
SIMP_TAC[REAL_LT_RDIV_EQ; REAL_ARITH `&0 < &1 + abs x`] THEN
ONCE_REWRITE_TAC[REAL_ARITH `a / b * c:real = (a * c) / b`] THEN
SIMP_TAC[REAL_LT_LDIV_EQ; REAL_ARITH `&0 < &1 + abs x`] THEN
REAL_ARITH_TAC);;
let REAL_SHRINK_LE = prove
(`!x y. x / (&1 + abs x) <= y / (&1 + abs y) <=> x <= y`,
REWRITE_TAC[GSYM REAL_NOT_LT; REAL_SHRINK_LT]);;
let REAL_SHRINK_EQ = prove
(`!x y. x / (&1 + abs x) = y / (&1 + abs y) <=> x = y`,
REWRITE_TAC[GSYM REAL_LE_ANTISYM; REAL_SHRINK_LE]);;
let REAL_SHRINK_GALOIS = prove
(`!x y. x / (&1 + abs x) = y <=> abs y < &1 /\ y / (&1 - abs y) = x`,
REPEAT GEN_TAC THEN EQ_TAC THEN STRIP_TAC THEN
FIRST_X_ASSUM(SUBST1_TAC o SYM) THEN
ASM_REWRITE_TAC[REAL_SHRINK_RANGE] THEN
ASM_SIMP_TAC[REAL_ABS_DIV; REAL_ARITH `abs(&1 + abs x) = &1 + abs x`;
REAL_ARITH `abs y < &1 ==> abs(&1 - abs y) = &1 - abs y`] THEN
MATCH_MP_TAC(REAL_ARITH `x * inv y * inv z = x * &1 ==> x / y / z = x`) THEN
AP_TERM_TAC THEN
MATCH_MP_TAC(REAL_FIELD `x * y = &1 ==> inv x * inv y = &1`) THEN
REPEAT(POP_ASSUM MP_TAC) THEN CONV_TAC REAL_FIELD);;
let REAL_GROW_SHRINK = prove
(`!x. x / (&1 + abs x) / (&1 - abs(x / (&1 + abs x))) = x`,
MESON_TAC[REAL_SHRINK_GALOIS; REAL_SHRINK_RANGE]);;
let REAL_SHRINK_GROW_EQ = prove
(`!x. x / (&1 - abs x) / (&1 + abs(x / (&1 - abs x))) = x <=> abs x < &1`,
MESON_TAC[REAL_SHRINK_GALOIS; REAL_SHRINK_RANGE]);;
let REAL_SHRINK_GROW = prove
(`!x. abs x < &1
==> x / (&1 - abs x) / (&1 + abs(x / (&1 - abs x))) = x`,
REWRITE_TAC[REAL_SHRINK_GROW_EQ]);;