forked from Alowis/lisflood-meteo-forcing
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathERA5land_h2d_yearly.py
300 lines (253 loc) · 11.7 KB
/
ERA5land_h2d_yearly.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
"""
Created on Wed Oct 27 17:29:27 2021
@author: tilloal
"""
#!/usr/bin/env python
# -*- coding: utf-8 -*-
__author__ = "Alois Tilloy"
__date__ = "June 2022"
# Import the os module
import os
dir_path = os.path.dirname(os.path.realpath(__file__))
# Change working directory
os.chdir(dir_path)
import re
import xarray as xr
import numpy as np
from netCDF4 import Dataset
import time
import pandas as pd
from xarray import concat
from tools import *
## Script 2/4
# script that creates yearly files of daily ERA5-land variables and from aggregated hourly values
# and creates yealry files from monthly files in the specified years.
# Requires:
# 1) monthly files of hourly data for the specified variables in the specified years
# (Outputs from "ERA5land_downloader.py")
# Output:
# 1) separate netCDF file for chosen daily variable for each year
#config = load_config(sys.argv[1])
config = load_config("cds_config.cfg")
# Print the current working directory
print("Current working directory: {0}".format(os.getcwd()))
# select your variable(s); name must be a valid ERA5 CDS API name
longnames = ['10m_u_component_of_wind', '10m_v_component_of_wind', '2m_temperature','surface_net_thermal_radiation', 'surface_net_solar_radiation','2m_dewpoint_temperature']
#varnames = ['u10', 'v10','2t','str','ssrd','2d','t2m', 'd2m']
input_string = input('Enter varialbes that need to be processed from the list [u10,v10,2t,str,ssrd,2d,t2m,d2m], enter "all" for all variables')
print("\n")
vin = input_string.split()
if vin == ["all"]:
varnames = ['u10', 'v10','2t','str','ssrd','2d','t2m', 'd2m','tp']
else:
varnames=vin
# print list
print('list: ', varnames)
# define names of new variables for LISFLOOD
tvar = ['ws','ta','rn','td','tp','rgd','u10','v10']
var = tvar
file_dir= config['download_folder']
#name at the beginning of the files
namefile=config["namefile"]
scratchoutdir = config['scratch_folder']
files = glob.glob(os.path.join(config['download_folder'],"hourly",namefile+"_*_*.nc"))
nfiles= len(files)
files.sort()
yr=0
yrlist=[]
data ={}
#read all the monthly files downloaded from the CDS
for file in files:
#format of input file must be : namefile_xx_yr_month.nc
yrprev=yr
lf=len(file)
splitname=os.path.basename(file).split('_')
yrloc=len(splitname)-2 #the year is always at the end of the filename
moloc=len(splitname)-1 #the month is always at the end of the filename
file_yearnc = os.path.basename(file).split('_')[yrloc]
file_monthnc = os.path.basename(file).split('_')[moloc]
yr = int(file_yearnc.split('.')[0])
mo = int(file_monthnc.split('.')[0])
hourly_v = xr.open_dataset(os.path.join(file))
yrlist.append(yr)
wc = list(hourly_v.keys())
print("the variables in this file are " + ' | '.join(wc))
common=set(wc).intersection(varnames)
print("the variables which will be treated are " + ' | '.join(common))
vc=list(common)
print('month ' + str(mo) + " year " + str(yr))
tan=len(hourly_v['time'])
koudur=range(0,tan,24)
start = time.time()
# Aggregating to daily timestep for each variable
if 'u10' in vc and 'v10' in vc:
v10= hourly_v['v10']
u10 = hourly_v['u10']
#wind= wind_uv_to_spd(u10,v10)
u10=u10.rename('u10')
daily_u = u10.resample(time='D').mean('time')
v10=v10.rename('v10')
daily_v = v10.resample(time='D').mean('time')
wind= wind_uv_to_spd(u10,v10)
wind=wind.rename({'ws'})
daily_w = wind.resample(time='D').mean('time')
if mo==1:
data['u10']=daily_u
data['v10']=daily_v
data['ws']=daily_w
else:
data['u10'] = concat([data['u10'],daily_u],dim='time')
data['v10'] = concat([data['v10'],daily_v],dim='time')
data['ws'] = concat([data['ws'],daily_w],dim='time')
# daily accumulation of precipitation
if 'tp' in vc:
tp= hourly_v['tp']
#convertion to mm
tp=tp*1000
daily_pr = tp.resample(time='D', closed='right', label='right').max('time')
daily_pr = daily_pr[0:-1,:,:] # remove last day of month as it is incomplete (23:00-00:00 missing) and fully captured in following month file
#dptest= daily_pr
#dptest.plot.surface(yincrease=True)
daily_pr=daily_pr.rename('tp')
if mo==1:
data['tp']=daily_pr
else:
data['tp'] = concat([data['tp'],daily_pr],dim='time')
# precipitation: calculate sum with frequency of 24h and multiply by 1000
# precipitation value is for the day before
# daily mean tempearature
if '2t' in vc or 't2m'in vc:
t2m=hourly_v['t2m']
#convert Kelvin to degrees C
daily_t2m = t2m.resample(time='D').mean('time')
daily_t2m=daily_t2m-273.15
daily_t2m=daily_t2m.rename('ta')
if mo==1:
data['ta']=daily_t2m
else:
data['ta'] = concat([data['ta'],daily_t2m],dim='time')
# daily means of surface net thermal radiation and surface net solar radiation
if 'str'in vc:
sstr=hourly_v['str']
daily_rn = sstr[koudur,:,:]
daily_rn=daily_rn.rename('rn')
if mo==1:
data['rn']=daily_rn
else:
data['rn'] = concat([data['rn'],daily_rn],dim='time')
if 'ssrd'in vc:
ssrd=hourly_v['ssrd']
daily_rgd = ssrd[koudur,:,:]
daily_rgd= daily_rgd.rename('rgd')
if mo==1:
data['rgd']=daily_rgd
else:
data['rgd'] = concat([data['rgd'],daily_rgd],dim='time')
# daily mean of dew point temperature
if '2d' in vc or 'd2m' in vc:
print(vc)
d2m=hourly_v['d2m']
#convert Kelvin to degrees C
d2m=d2m-273.15
daily_d2m = d2m.resample(time='D').mean('time')
daily_d2m=daily_d2m.rename({'td'})
if mo==1:
data['td']=daily_d2m
else:
data['td']= concat([data['td'],daily_d2m],dim='time')
end=time.time()
print(end - start)
# Generate yearly files for each variable separately
compression=0
if mo==12:
file_dates_dly = pd.date_range(start=datetime(yr,1,1), end=datetime(yr+1,1,1)-pd.Timedelta(days=1), freq='D')
template_lat = np.array(hourly_v['latitude'][:])
template_lon = np.array(hourly_v['longitude'][:])
if 'v10' in vc:
vr=var[7]
print ('Start generating netcdf file for variable: '+ vr)
ncfile_v10 = initialize_netcdf(os.path.join(scratchoutdir,'e5ld_01deg_v10_' + str(yr) + '.nc'),template_lat,template_lon,vr,'m s-1',compression,1)
time_value =(file_dates_dly-pd.to_datetime(datetime(1950, 1, 1)))
ti0=time_value.astype('timedelta64[D]')
tlist=ti0.tolist()
timef=np.asarray(list(map(int,tlist)))
ncfile_v10.variables['time'][:] = timef
ncfile_v10.variables['v10'][:] = data['v10']
ncfile_v10.close()
if 'u10' in vc:
vr=var[6]
print ('Start generating netcdf file for variable: '+ vr)
ncfile_u10 = initialize_netcdf(os.path.join(scratchoutdir,'e5ld_01deg_u10_' + str(yr) + '.nc'),template_lat,template_lon,vr,'m s-1',compression,1)
time_value =(file_dates_dly-pd.to_datetime(datetime(1950, 1, 1)))
ti0=time_value.astype('timedelta64[D]')
tlist=ti0.tolist()
timef=np.asarray(list(map(int,tlist)))
ncfile_u10.variables['time'][:] = timef
ncfile_u10.variables['u10'][:] = data['u10']
ncfile_u10.close()
if '2t' in vc or 't2m' in vc:
vr=var[1]
print ('Start generating netcdf file for variable: '+ vr)
ncfile_ta = initialize_netcdf(os.path.join(scratchoutdir,'e5ld_01deg_ta_' + str(yr) + '.nc'),template_lat,template_lon,vr,'degrees Celcius',compression,1)
time_value =(file_dates_dly-pd.to_datetime(datetime(1950, 1, 1)))
ti0=time_value.astype('timedelta64[D]')
tlist=ti0.tolist()
timef=np.asarray(list(map(int,tlist)))
ncfile_ta.variables['time'][:] = timef
ncfile_ta.variables['ta'][:] = data['ta']
ncfile_ta.close()
if '2d' in vc or 'd2m' in vc:
vr=var[3]
print ('Start generating netcdf file for variable: '+ vr)
ncfile_td = initialize_netcdf(os.path.join(scratchoutdir,'e5ld_01deg_td_' + str(yr) + '.nc'),template_lat,template_lon,vr,'degrees Celcius',compression,1)
time_value =(file_dates_dly-pd.to_datetime(datetime(1950, 1, 1)))
ti0=time_value.astype('timedelta64[D]')
tlist=ti0.tolist()
timef=np.asarray(list(map(int,tlist)))
ncfile_td.variables['time'][:] = timef
ncfile_td.variables['td'][:] = data['td']
ncfile_td.close()
if 'ssrd' in vc:
vr=var[5]
print ('Start generating netcdf file for variable: '+ vr)
ncfile_rgd = initialize_netcdf(os.path.join(scratchoutdir,'e5ld_01deg_rgd_' + str(yr) + '.nc'),template_lat,template_lon,vr,'J m-2 d-1',compression,1)
time_value =(file_dates_dly-pd.to_datetime(datetime(1950, 1, 1)))
ti0=time_value.astype('timedelta64[D]')
tlist=ti0.tolist()
timef=np.asarray(list(map(int,tlist)))
ncfile_rgd.variables['time'][:] = timef
ncfile_rgd.variables['rgd'][:] = data['rgd']
ncfile_rgd.close()
if 'str' in vc:
vr=var[2]
print ('Start generating netcdf file for variable: '+ vr)
ncfile_rn = initialize_netcdf(os.path.join(scratchoutdir,'e5ld_01deg_rn_' + str(yr) + '.nc'),template_lat,template_lon,vr,'J m-2 d-1',compression,1)
time_value =(file_dates_dly-pd.to_datetime(datetime(1950, 1, 1)))
ti0=time_value.astype('timedelta64[D]')
tlist=ti0.tolist()
timef=np.asarray(list(map(int,tlist)))
ncfile_rn.variables['time'][:] = timef
ncfile_rn.variables['rn'][:] = data['rn']
ncfile_rn.close()
if 'tp' in vc:
vr=var[4]
print ('Start generating netcdf file for variable: '+ vr)
ncfile_tp = initialize_netcdf(os.path.join(scratchoutdir,'e5ld_01deg_tp_' + str(yr) + '.nc'),template_lat,template_lon,vr,'mm',compression,1)
time_value =(file_dates_dly-pd.to_datetime(datetime(1950, 1, 1)))
ti0=time_value.astype('timedelta64[D]')
tlist=ti0.tolist()
timef=np.asarray(list(map(int,tlist)))
ncfile_tp.variables['time'][:] = timef
ncfile_tp.variables['tp'][:] = data['tp']
ncfile_tp.close()
if 'u10' in vc and 'v10' in vc:
vr=var[0]
print ('Start generating netcdf file for variable: '+ vr)
ncfile_ws = initialize_netcdf(os.path.join(scratchoutdir,'e5ld_01deg_ws_' + str(yr) + '.nc'),template_lat,template_lon,vr,'m s-1',compression,1)
time_value =(file_dates_dly-pd.to_datetime(datetime(1950, 1, 1)))
ti0=time_value.astype('timedelta64[D]')
tlist=ti0.tolist()
timef=np.asarray(list(map(int,tlist)))
ncfile_ws.variables['time'][:] = timef
ncfile_ws.variables['ws'][:] = data['ws']
ncfile_ws.close()