forked from Alowis/lisflood-meteo-forcing
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathERA5land_CDS_downloader.py
315 lines (251 loc) · 14.1 KB
/
ERA5land_CDS_downloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
"""
Created on Mon Apr 4 17:09:58 2022
@author: Alois Tilloy and Hylke Beck
"""
#!/usr/bin/env python
# -*- coding: utf-8 -*-
__author__ = "Alois Tilloy"
__date__ = "June 2022"
import rioxarray # for the extension to load
import os, sys, glob, time, pdb
import pandas as pd
import numpy as np
import xarray as xr
dir_path = os.path.dirname(os.path.realpath(__file__))
# Change working directory
os.chdir(dir_path)
#from config_comp import *
import netCDF4 as nc
from tools import *
from skimage.transform import resize
from skimage.transform import rescale
from skimage.io import imread
import matplotlib.pyplot as plt
#import rasterio
import shutil
from datetime import timedelta
# Load configuration file
config = load_config(sys.argv[1])
namefiles=config['namefiles']
petc = config['petc']
compression = config['compression']
eu_area = [72.25, -25.25, 22.25, 50.25,]
e5land_res= config['e5land_res']
cover = config['cover']
start= int(sys.argv[2])
end = int(sys.argv[3])
#start=1987
#end=1988
print("working on " + cover)
if compression=='1':
print('netcdf files will be compressed using add_offset and scale_factor')
def main():
# Output dates
year_start,year_end = start, end
out_dates_dly = pd.date_range(start=datetime(year_start,1,1), end=datetime(year_end+1,1,1)-pd.Timedelta(days=1), freq='D')
# Load template map
dset = nc.Dataset(config['templatemap_path'])
dset.set_auto_maskandscale(False)
template_lat = np.asarray(dset.variables['lat'])
template_lon = np.asarray(dset.variables['lon'])
template_res = round(template_lon[1]-template_lon[0],13)
varname = list(dset.variables.keys())[-1]
template_np = np.array(dset.variables[varname][:])
condition = template_np==0
# Determine map sizes
mapsize_global = (np.round(180/template_res).astype(int),np.round(360/template_res).astype(int))
# this is the map size for pan-european hydrological anaysis
scaleR=(0.1/template_res)
# The grid need to be shifted if border has 2 significan digits
shift=round(eu_area[0]-round(eu_area[0],1),2)
mapsize_ereu =((np.round((eu_area[0]-eu_area[2])/e5land_res)+1).astype(int),(np.round((eu_area[3]-eu_area[1])/e5land_res)+1).astype(int))
size_eulon = round(mapsize_ereu[0]*scaleR)
size_eulat = round(mapsize_ereu[1]*scaleR)
mapsize_europe = (size_eulon,size_eulat)
mapsize_europe2 = (np.round((eu_area[0]-eu_area[2])/template_res).astype(int),np.round((eu_area[3]-eu_area[1]+1)/template_res).astype(int))
row_ue,col_lue = latlon2rowcol(template_lat[0],template_lon[0],template_res,eu_area[0]+shift,eu_area[1]-shift)
mapsize_template = template_np.shape
# locate the european and template domain in the global domain
row_upper,col_left = latlon2rowcol(template_lat[0],template_lon[0],template_res,90,-180)
row_uppeu,col_lefeu = latlon2rowcol(eu_area[0]+shift,eu_area[1]-shift,template_res,90,-180)
# Load elevation data, append zeros to top and bottom to make global, and resample to template resolution
elev = np.zeros((21600,43200),dtype=np.single)
srcz=imread(os.path.join(config['dem_folder'],'elevation_1KMmn_GMTEDmn.tif'), plugin="tifffile")
# Removed rastrio because it is conflicting with xarray
#src = rasterio.open(os.path.join(config['dem_folder'],'elevation_1KMmn_GMTEDmn.tif'))
elev[720:17520,:] = srcz
elev_global = imresize_mean(elev,mapsize_global)
elev_europe = elev_global[row_uppeu:row_uppeu+mapsize_europe[0],col_lefeu:col_lefeu+mapsize_europe[1]]
elev_template = elev_global[row_upper:row_upper+len(template_lat),col_left:col_left+len(template_lon)]
# Prepare temperature downscaling
tmp = imresize_mean(elev_global,(1800,3600)) # Resample to dimensions of input data - global
#Rescale to output resolution
tmp = rescale(tmp,scaleR,order=1,mode='edge',anti_aliasing=False)
#Add option: "Europe" vs "Global"
if cover=="global":
elev_delta = elev_global-tmp
if cover=="europe":
tmp=tmp[row_uppeu:row_uppeu+mapsize_europe[0],col_lefeu:col_lefeu+mapsize_europe[1]]
elev_delta = elev_europe-tmp
#plt.imshow(temp_delta,vmin=-0.5,vmax=0.5)
#plt.show()
temp_delta = -6.5*elev_delta/1000 # Simple 6.5 degrees C/km lapse rate
lat_global = np.repeat(np.resize(np.arange(90-template_res/2,-90-template_res/2,-template_res),(10800,1)),mapsize_global[1],axis=1)
lat_template = lat_global[row_upper:row_upper+len(template_lat),col_left:col_left+len(template_lon)]
lat_europe = lat_global[row_uppeu:row_uppeu+mapsize_europe[0],col_lefeu:col_lefeu++mapsize_europe[1]]
# Check if output already exists in scratch folder or output folder
scratchoutdir = os.path.join(config['scratch_folder'],'e5land_reanalysis')
finaloutdir = os.path.join(config['output_folder'],'e5land_reanalysis')
# Check if all input variables are present
varnames = ['ws', 'ta','td','rn','rgd']
nfiles = {}
for vr in varnames:
files = glob.glob(os.path.join(config['e5land_folder'], namefiles + "_ta_*.nc"))
nfiles[vr] = len(files)
nfiles_arr = np.array(list(nfiles.values()))
if (np.max(nfiles_arr)==0) | (any(nfiles_arr<np.max(nfiles_arr))):
print(nfiles)
raise Exception('Not all input variables present')
sys.exit()
# Initialize output files
if os.path.isdir(scratchoutdir)==False:
os.makedirs(scratchoutdir)
ncfile_ta = initialize_netcdf(os.path.join(scratchoutdir,'ta.nc'),template_lat,template_lon,'ta','degree_Celsius',compression,1)
ncfile_pr = initialize_netcdf(os.path.join(scratchoutdir,'tp.nc'),template_lat,template_lon,'tp','mm d-1',compression,1)
if petc=="1":
ncfile_et = initialize_netcdf(os.path.join(scratchoutdir,'et.nc'),template_lat,template_lon,'et','mm d-1',compression,1)
ncfile_ew = initialize_netcdf(os.path.join(scratchoutdir,'ew.nc'),template_lat,template_lon,'ew','mm d-1',compression,1)
ncfile_es = initialize_netcdf(os.path.join(scratchoutdir,'es.nc'),template_lat,template_lon,'es','mm d-1',compression,1)
else:
ncfile_rn = initialize_netcdf(os.path.join(scratchoutdir,'rn.nc'),template_lat,template_lon,'rn','J m-2 d',compression,1)
ncfile_ws = initialize_netcdf(os.path.join(scratchoutdir,'ws.nc'),template_lat,template_lon,'ws','m s-1',compression,1)
ncfile_rgd = initialize_netcdf(os.path.join(scratchoutdir,'rgd.nc'),template_lat,template_lon,'rgd','J m-2 d',compression,1)
ncfile_td = initialize_netcdf(os.path.join(scratchoutdir,'td.nc'),template_lat,template_lon,'td','degree_Celsius',compression,1)
# Loop over input files (MFDataset doesn't work properly)
print(os.path.join(config['e5land_folder'],namefiles + "_ta_*.nc"))
files = glob.glob(os.path.join(config['e5land_folder'], namefiles + "_ta_*.nc"))
for file in files:
splitname=os.path.basename(file).split('_')
yrloc=len(splitname)-1 #the year is always at the end of the filename
file_yearnc = os.path.basename(file).split('_')[yrloc]
file_year = int(file_yearnc.split('.')[0])
#file_year_end = int(os.path.basename(file).split('_')[6][:-3])
file_dates_dly = pd.date_range(start=datetime(file_year,1,1), end=datetime(file_year+1,1,1)-pd.Timedelta(days=1), freq='D')
hits = np.sum((out_dates_dly.year==file_year))
if hits==0:
continue
# Open input files
print('Processing '+os.path.basename(file))
t0 = time.time()
dset_tmean = xr.open_dataset(file,diskless=True) # degrees C
# JLR: REVISE FROM HERE, ESPECIALLY LINE BELOW
dset_wind = xr.open_dataset(file.replace('ta','ws'),diskless=True) # m/s
dset_tdew = xr.open_dataset(file.replace('ta','td'),diskless=True) # Pa
dset_swd = xr.open_dataset(file.replace('ta','rgd'),diskless=True) # W/m2
dset_lwd = xr.open_dataset(file.replace('ta','rn'),diskless=True) # W/m2
dset_pr = xr.open_dataset(file.replace('ta','tp'),diskless=True) # mm/d
# Loop over days of input file
for ii in np.arange(len(file_dates_dly)):
if file_dates_dly[ii] not in out_dates_dly:
continue
print('Processing year '+ str(file_year) +', date: '+str(file_dates_dly[ii])+', time stamp: '+datetime.now().strftime("%d/%m/%Y, %H:%M:%S")+')')
# Read data from input files
data = {}
#index = np.where(out_dates_dly==file_dates_dly[ii])[0][0]
data['ta'] = dset_tmean['ta'][ii,:,:] # degrees C
if petc=="1":
data['ws'] = dset_wind.variables['ws'][ii,:,:]*0.75 # m/s (factor 0.75 to translate from 10-m to 2-m height)
else:
data['ws'] = dset_wind['ws'][ii,:,:] # m/s (the factor will be applied in LISVAP)
data['rgd'] = dset_swd['rgd'][ii,:,:] # J/m2/d
data['rn'] = dset_lwd['rn'][ii,:,:] # J/m2/d
data['tp'] = dset_pr['tp'][ii,:,:] # mm/d
data['td'] = dset_tdew['td'][ii,:,:]
# Simple lapse rate downscaling of temperature and air pressure, nearest-neighbor resampling of other vars
for key in data.keys():
data[key]=data[key].rio.write_crs(4326)
data[key]=data[key].rio.write_nodata('nan')
data[key]=data[key].rio.set_spatial_dims('lon','lat')
data[key]=data[key].rio.interpolate_na(method='nearest')
if key=='xxx': #(key=='ta')| (key=='td'): #JLR
data[key] = resize(data[key],mapsize_europe,order=1,mode='constant',anti_aliasing=False)
data[key] = np.around(data[key]+temp_delta,1)
else:
#3 possible methods
#data[key] = resize(data[key],mapsize_europe,order=0,mode='edge',anti_aliasing=False)
data[key] = rescale(data[key], scaleR, order=0, mode='edge', anti_aliasing=False)
#If this method is used no need to subset data to template region
#data[key] = data[key].interp_like(obj, method='nearest')
# Subset data to template region
for key in data.keys():
if cover=="global":
row_upper = 0 #JLR
col_left = 1 #JLR
data[key] = data[key][row_upper:row_upper+len(template_lat),col_left:col_left+len(template_lon)]
if cover=="europe":
data[key] = data[key][row_ue:row_ue+len(template_lat),col_lue:col_lue+len(template_lon)]
# fill the values with NA where condition is false, where there should be NaN
data[key]= np.where(condition,np.nan,data[key])
#compression part
if compression=="1":
scale_factor=meteo_vars_config[key][KEY_SCALE_FACTOR]
add_offset=meteo_vars_config[key][KEY_OFFSET]
data[key][np.isnan(data[key])] = (-9999 - add_offset) * scale_factor
# Write data to output netCDFs
time_value = (file_dates_dly[ii]-pd.to_datetime(datetime(1950, 1, 1))).total_seconds()/86400
index = np.where(out_dates_dly==file_dates_dly[ii])[0][0]
#Potential evapotranspiration is not implemented yet for the set of input from ERA5-land
#daily variables need to be the accumulation of the previous day
#no need to move date as the variable is already an accumulation of the previous day
ncfile_pr.variables['time'][index] = time_value
ncfile_pr.variables['tp'][index,:,:] = data['tp']
#+1 as LISVAP and LISFLOOD use the value of the previous day
ncfile_ta.variables['time'][index] = time_value+1
ncfile_ta.variables['ta'][index,:,:] = data['ta']
ncfile_ws.variables['time'][index] = time_value+1
ncfile_ws.variables['ws'][index,:,:] = data['ws']
ncfile_rn.variables['time'][index] = time_value
ncfile_rn.variables['rn'][index,:,:] = data['rn']
ncfile_rgd.variables['time'][index] = time_value
ncfile_rgd.variables['rgd'][index,:,:] = data['rgd']
ncfile_td.variables['time'][index] = time_value+1
ncfile_td.variables['td'][index,:,:] = data['td']
# Generate figures to verify output
if ii==0:
makefig('figures','ta',data['ta'],0,12)
#makefig('figures','pr',data['pr'],0,12)
for key in data.keys():
makefig('figures',key,data[key],np.min(data[key]),np.max(data[key]))
makefig('figures','elev_template',elev_template,0,6000)
# Close input files
dset_tmean.close()
dset_wind.close()
dset_swd.close()
dset_lwd.close()
dset_pr.close()
dset_tdew.close()
print("Time elapsed is "+str(time.time()-t0)+" sec")
# Close output files
ncfile_pr.close()
ncfile_ta.close()
if "petc"==1:
ncfile_et.close()
ncfile_ew.close()
ncfile_es.close()
else:
ncfile_ws.close()
ncfile_rn.close()
ncfile_rgd.close()
ncfile_td.close()
# Move output from scratch folder to output folder
print('-------------------------------------------------------------------------------')
if os.path.isdir(finaloutdir)==False:
os.makedirs(finaloutdir)
for file in glob.glob(os.path.join(scratchoutdir,'*')):
t0 = time.time()
print('Moving '+os.path.basename(file)+' ('+str(round(os.path.getsize(file)/10**9))+' GB) to '+finaloutdir)
shutil.copy(file, finaloutdir)
print("Time elapsed is "+str(time.time()-t0)+" sec")
shutil.rmtree(scratchoutdir)
if __name__ == '__main__':
main()