-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_gradient_flow.py
153 lines (127 loc) · 6.04 KB
/
test_gradient_flow.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import torch
import torch.nn as nn
from model import IMFModel, DenseFeatureEncoder, LatentTokenEncoder, LatentTokenDecoder, ImplicitMotionAlignment, FrameDecoder, ResNetFeatureExtractor
def test_gradient_flow(model, input_shape):
print(f"\nTesting gradient flow for {type(model).__name__}")
x = torch.randn(input_shape)
x.requires_grad_(True)
if isinstance(model, IMFModel):
x_current = x
x_reference = torch.randn_like(x)
output = model(x_current, x_reference)
elif isinstance(model, (DenseFeatureEncoder, LatentTokenEncoder, ResNetFeatureExtractor)):
output = model(x)
elif isinstance(model, LatentTokenDecoder):
latent = torch.randn(input_shape[0], model.const.shape[1]) # Adjust size as needed
output = model(latent)
elif isinstance(model, ImplicitMotionAlignment):
m_c = torch.randn_like(x)
m_r = torch.randn_like(x)
f_r = torch.randn_like(x)
output = model(m_c, m_r, f_r)
elif isinstance(model, FrameDecoder):
# Assuming FrameDecoder expects a list of tensors
features = [torch.randn_like(x) for _ in range(4)] # Adjust number as needed
output = model(features)
else:
raise ValueError(f"Unsupported model type: {type(model).__name__}")
if isinstance(output, tuple):
loss = sum(o.sum() for o in output if isinstance(o, torch.Tensor))
elif isinstance(output, list):
loss = sum(o.sum() for o in output)
else:
loss = output.sum()
loss.backward()
for name, param in model.named_parameters():
if param.grad is None:
print(f"Warning: No gradient for {name}")
else:
grad_norm = param.grad.norm().item()
print(f"{name}: gradient norm = {grad_norm:.6f}")
assert grad_norm != 0, f"Zero gradient for {name}"
assert not torch.isnan(param.grad).any(), f"NaN gradient for {name}"
assert not torch.isinf(param.grad).any(), f"Inf gradient for {name}"
print(f"Gradient flow test passed for {type(model).__name__}")
def test_feature_extractor(feature_extractor, input_shape):
print(f"\nTesting {type(feature_extractor).__name__}")
x = torch.randn(input_shape)
features = feature_extractor(x)
assert isinstance(features, list), f"Expected list output, got {type(features)}"
print(f"Number of feature maps: {len(features)}")
for i, feature in enumerate(features):
print(f"Feature map {i} shape: {feature.shape}")
# Test gradient flow
loss = sum(feature.sum() for feature in features)
loss.backward()
for name, param in feature_extractor.named_parameters():
if param.grad is None:
print(f"Warning: No gradient for {name}")
else:
grad_norm = param.grad.norm().item()
print(f"{name}: gradient norm = {grad_norm:.6f}")
assert grad_norm != 0, f"Zero gradient for {name}"
assert not torch.isnan(param.grad).any(), f"NaN gradient for {name}"
assert not torch.isinf(param.grad).any(), f"Inf gradient for {name}"
print(f"Gradient flow test passed for {type(feature_extractor).__name__}")
def test_implicit_motion_alignment_modules(use_mlgffn=False):
print("\nTesting ImplicitMotionAlignment modules")
motion_dims = [128, 256, 512, 512]
batch_size = 1
spatial_sizes = [64, 32, 16, 8] # Example spatial sizes for different levels
for i, dim in enumerate(motion_dims):
model = ImplicitMotionAlignment(
feature_dim=dim,
motion_dim=dim,
depth=4,
num_heads=8,
window_size=8,
mlp_ratio=4,
use_mlgffn=use_mlgffn
)
spatial_size = spatial_sizes[i]
input_shape = (batch_size, dim, spatial_size, spatial_size)
m_c = torch.randn(input_shape)
m_r = torch.randn(input_shape)
f_r = torch.randn(input_shape)
output = model(m_c, m_r, f_r)
loss = output.sum()
loss.backward()
print(f"Testing ImplicitMotionAlignment for dim={dim}, spatial_size={spatial_size}")
for name, param in model.named_parameters():
if param.grad is None:
print(f"Warning: No gradient for {name}")
else:
grad_norm = param.grad.norm().item()
print(f"{name}: gradient norm = {grad_norm:.6f}")
assert grad_norm != 0, f"Zero gradient for {name}"
assert not torch.isnan(param.grad).any(), f"NaN gradient for {name}"
assert not torch.isinf(param.grad).any(), f"Inf gradient for {name}"
print(f"Gradient flow test passed for ImplicitMotionAlignment with dim={dim}")
def run_all_gradient_flow_tests():
# Test IMFModel
model = IMFModel()
test_gradient_flow(model, (1, 3, 256, 256))
# Test DenseFeatureEncoder
dense_feature_encoder = DenseFeatureEncoder(output_channels=[128, 256, 512, 512])
test_feature_extractor(dense_feature_encoder, (1, 3, 256, 256))
# Test ResNetFeatureExtractor
resnet_feature_extractor = ResNetFeatureExtractor(output_channels=[128, 256, 512, 512])
test_feature_extractor(resnet_feature_extractor, (1, 3, 256, 256))
# Test LatentTokenEncoder
latent_token_encoder = LatentTokenEncoder(
initial_channels=64,
output_channels=[128, 256, 512, 512, 512, 512],
dm=32
)
test_gradient_flow(latent_token_encoder, (1, 3, 256, 256))
# Test LatentTokenDecoder
latent_token_decoder = LatentTokenDecoder()
test_gradient_flow(latent_token_decoder, (1, 32)) # Adjust latent dim as needed
# Test ImplicitMotionAlignment modules
test_implicit_motion_alignment_modules()
# Test FrameDecoder
# frame_decoder = FrameDecoder()
# # [torch.Size([1, 512, 32, 32]), torch.Size([1, 512, 32, 32]), torch.Size([1, 512, 32, 32]), torch.Size([1, 512, 32, 32])]
# test_gradient_flow(frame_decoder, (1, 512, 32, 32))
if __name__ == "__main__":
run_all_gradient_flow_tests()