forked from roahmlab/crows
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_statistics_planning_3d.py
380 lines (349 loc) · 15.4 KB
/
run_statistics_planning_3d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
import torch
import argparse
import numpy as np
import time
import json
import random
from tqdm import tqdm
from environments.urdf_obstacle import KinematicUrdfWithObstacles
from environments.fullstep_recorder import FullStepRecorder
from planning.armtd.armtd_3d_urdf import ARMTD_3D_planner
from planning.sparrows.sparrows_urdf import SPARROWS_3D_planner
from planning.crows.crows_urdf import CROWS_3D_planner
from planning.common.waypoints import GoalWaypointGenerator
from visualizations.fo_viz import FOViz
from visualizations.sphere_viz import SpherePlannerViz
import os
T_PLAN, T_FULL = 0.5, 1.0
def set_random_seed(seed):
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
def evaluate_planner(planner,
planner_name='sphere',
n_envs=1000,
n_steps=150,
n_links=7,
n_obs=5,
save_success_trial_id=False,
video=False,
reachset_viz=False,
time_limit=0.5,
detail=True,
t_final_thereshold=0.,
check_self_collision=False,
tol = 1e-5,
):
t_armtd = 0.0
num_success = 0
num_collision = 0
num_stuck = 0
num_no_solution = 0
num_step = 0
t_armtd_list = []
t_success_list = []
planner_stats = {}
if save_success_trial_id:
success_episodes = []
if video:
import platform
if platform.system() == "Linux":
os.environ['PYOPENGL_PLATFORM'] = 'egl'
video_folder = f'planning_videos/{planner_name}/3d{n_links}links{n_obs}obs'
if reachset_viz:
video_folder += '_reachset'
if not os.path.exists(video_folder):
os.makedirs(video_folder)
if detail:
import pickle
planning_details = {}
trial_details = {}
env_args = dict(
step_type='integration',
check_joint_limits=True,
check_self_collision=check_self_collision,
use_bb_collision=False,
render_mesh=True,
reopen_on_close=False,
obs_size_min = [0.2,0.2,0.2],
obs_size_max = [0.2,0.2,0.2],
n_obs=n_obs,
renderer = 'pyrender-offscreen',
info_nearest_obstacle_dist = False,
obs_gen_buffer = 0.01
)
env = KinematicUrdfWithObstacles(
robot=rob.urdf,
**env_args
)
if video and reachset_viz:
if 'sphere' in planner_name or 'crows' in planner_name:
viz = SpherePlannerViz(planner, plot_full_set=True, t_full=T_FULL)
elif 'armtd' in planner_name:
viz = FOViz(planner, plot_full_set=True, t_full=T_FULL)
else:
raise NotImplementedError(f"Visualizer for {planner_name} type has not been implemented yet.")
env.add_render_callback('spheres', viz.render_callback, needs_time=False)
for i_env in tqdm(range(n_envs)):
set_random_seed(i_env)
obs = env.reset()
waypoint_generator = GoalWaypointGenerator(obs['qgoal'], planner.osc_rad*3)
if detail:
planning_details[i_env] = {
'initial': obs,
'trajectory': {
'k': [],
'flag': [],
'nearest_distance': []
}
}
t_curr_trial = []
if video:
video_path = os.path.join(video_folder, f'video{i_env}.mp4')
video_recorder = FullStepRecorder(env, path=video_path)
was_stuck = False
force_fail_safe = False
for i_step in range(n_steps):
qpos, qvel, qgoal = obs['qpos'], obs['qvel'], obs['qgoal']
obstacles = (np.asarray(obs['obstacle_pos']), np.asarray(obs['obstacle_size']))
waypoint = waypoint_generator.get_waypoint(qpos, qvel)
ts = time.time()
ka, flag, planner_stat = planner.plan(qpos, qvel, waypoint, obstacles, time_limit=time_limit, t_final_thereshold=t_final_thereshold, tol=tol)
t_elasped = time.time()-ts
t_armtd += t_elasped
t_armtd_list.append(t_elasped)
t_curr_trial.append(t_elasped)
for key in planner_stat:
if planner_stat[key] is None:
continue
if key in planner_stats:
if isinstance(planner_stat[key], list):
planner_stats[key] += planner_stat[key]
else:
planner_stats[key].append(planner_stat[key])
else:
if isinstance(planner_stat[key], list):
planner_stats[key] = planner_stat[key]
else:
planner_stats[key] = [planner_stat[key]]
if flag != 0:
ka = (0 - qvel)/(T_FULL - T_PLAN)
if force_fail_safe:
ka = (0 - qvel)/(T_FULL - T_PLAN)
force_fail_safe = False
else:
force_fail_safe = (flag == 0) and planner.nlp_problem_obj.use_t_final and (np.sqrt(planner.final_cost) < env.goal_threshold)
if video and reachset_viz:
if flag == 0:
viz.set_ka(ka)
else:
viz.set_ka(None)
obs, reward, done, info = env.step(ka)
if video:
video_recorder.capture_frame()
if detail:
planning_details[i_env]['trajectory']['k'].append(ka)
planning_details[i_env]['trajectory']['flag'].append(flag)
num_step += 1
if info['collision_info']['in_collision']:
num_collision += 1
break
elif reward == 1:
num_success += 1
t_success_list += t_curr_trial
if save_success_trial_id:
success_episodes.append(i_env)
break
elif done:
break
if flag != 0:
if was_stuck:
num_step -= 1
num_stuck += 1
break
else:
was_stuck = True
if flag > 0 or flag == -5:
num_no_solution += 1
else:
was_stuck = False
if detail:
trial_details[i_env] = {'success': reward == 1, 'length': i_step+1, 'collision': info['collision_info']['in_collision']}
planning_details[i_env].update(
trial_details[i_env]
)
if video:
video_recorder.close()
planner_stats_summary = {}
for key in planner_stats:
planner_stats_summary[key] = {
'mean': np.mean(planner_stats[key]),
'std': np.std(planner_stats[key]),
'max': float(np.max(planner_stats[key]))
}
stats = {
'planner': planner_name,
'n_trials': n_envs,
'n_links': n_links,
'n_obs':n_obs,
'time_limit': time_limit,
't_final_thereshold': t_final_thereshold,
'num_success': num_success,
'num_collision': num_collision,
'num_stuck': num_stuck,
'mean planning time': np.mean(np.array(t_armtd_list)),
'std planning time': np.std(np.array(t_armtd_list)),
'mean planning time for success trials': np.mean(np.array(t_success_list)),
'std planning time for success trials': np.std(np.array(t_success_list)),
'total planning time': t_armtd,
'num_no_solution': num_no_solution,
'num_step': num_step,
'planner_stats': planner_stats_summary,
}
if detail:
stats.update({'trial_details': trial_details})
stats.update({'env_args': env_args})
with open(f"planning_results/3d{n_links}links{n_obs}obs/{planner_name}_stats_3d{n_links}links{n_envs}trials{n_obs}obs{n_steps}steps_{time_limit}limit.json", 'w') as f:
if save_success_trial_id:
stats['success_episodes'] = success_episodes
json.dump(stats, f, indent=2)
if detail:
with open(f"planning_results/3d{n_links}links{n_obs}obs/{planner_name}_stats_3d{n_links}links{n_envs}trials{n_obs}obs{n_steps}steps_{time_limit}limit.pkl", 'wb') as f:
pickle.dump(planning_details, f)
return stats
def read_params():
parser = argparse.ArgumentParser(description="Arm Planning")
# general setting
parser.add_argument("--planner", type=str, default="crows") # "crows", "armtd", "sphere"
parser.add_argument('--robot_type', type=str, default="branched")
parser.add_argument('--n_links', type=int, default=7)
parser.add_argument('--n_dims', type=int, default=3)
parser.add_argument('--n_obs', type=int, default=5)
parser.add_argument('--n_envs', type=int, default=100)
parser.add_argument('--n_steps', type=int, default=150)
parser.add_argument('--device', type=int, default=0 if torch.cuda.is_available() else -1, choices=range(-1,torch.cuda.device_count())) # Designate which cuda to use, default: cpu
parser.add_argument('--dtype', type=int, default=32)
# visualization settings
parser.add_argument('--video', action='store_true')
parser.add_argument('--reachset', action='store_true')
# optimization info
parser.add_argument('--num_spheres', type=int, default=5)
parser.add_argument('--time_limit', type=float, default=1e20)
parser.add_argument('--t_final_thereshold', type=float, default=0.2)
parser.add_argument('--solver', type=str, default="ma27")
parser.add_argument('--tol', type=float, default=1e-3) # desired convergence tolerance for IPOPT solver
# results info
parser.add_argument('--save_success', action='store_true') # whether to save success trial id
parser.add_argument('--detail', action='store_true') # whether to save trajetcory detail
# CROWS
parser.add_argument('--not_use_learned_grad', action='store_true') # whether to not use learned gradient for CROWS
parser.add_argument('--confidence_idx', type=int, default=2) #option for confidence level of CROWS model uncertainty -> {idx:epsilon_hat}, 0: 99.999%, 1: 99.99%, 2: 99.9%, 3: 99% 4: 90% 5:80%
return parser.parse_args()
if __name__ == '__main__':
torch.backends.cuda.matmul.allow_tf32 = False
params = read_params()
planner_name = params.planner
# Set device
device = torch.device('cpu') if params.device <0 else torch.device(f'cuda:{params.device}')
# Set dtype
assert params.dtype ==32 or params.dtype == 64
dtype = torch.float32 if params.dtype == 32 else torch.float64
print(f"Running {params.n_envs}trials of {planner_name} 3D{params.n_links}Links{params.n_obs}obs with {params.n_steps} step limit and {params.time_limit}s time limit each step")
print(f"Using device {device}")
planning_result_dir = f'planning_results/3d{params.n_links}links{params.n_obs}obs'
if not os.path.exists(planning_result_dir):
os.makedirs(planning_result_dir)
stats = {}
import zonopyrobots as robots2
robots2.DEBUG_VIZ = False
basedirname = os.path.dirname(robots2.__file__)
robot_path = 'robots/assets/robots/kinova_arm/gen3.urdf'
rob = robots2.ZonoArmRobot.load(os.path.join(basedirname, robot_path), dtype = dtype, device=device, create_joint_occupancy=True)
if planner_name == 'armtd':
planner = ARMTD_3D_planner(
rob,
dtype = dtype,
device=device,
linear_solver=params.solver,
)
stats['armtd'] = evaluate_planner(
planner=planner,
planner_name=f'armtd_{params.robot_type}_t{params.time_limit}_tol{params.tol}',
n_envs=params.n_envs,
n_steps=params.n_steps,
n_links=params.n_links,
n_obs=params.n_obs,
save_success_trial_id=params.save_success,
video=params.video,
reachset_viz=params.reachset,
time_limit=params.time_limit,
detail=params.detail,
t_final_thereshold=params.t_final_thereshold,
tol = params.tol,
)
if planner_name == 'sphere' or planner_name == 'crows':
joint_radius_override = {
'joint_1': torch.tensor(0.0503305, dtype=torch.float, device=device),
'joint_2': torch.tensor(0.0630855, dtype=torch.float, device=device),
'joint_3': torch.tensor(0.0463565, dtype=torch.float, device=device),
'joint_4': torch.tensor(0.0634475, dtype=torch.float, device=device),
'joint_5': torch.tensor(0.0352165, dtype=torch.float, device=device),
'joint_6': torch.tensor(0.0542545, dtype=torch.float, device=device),
'joint_7': torch.tensor(0.0364255, dtype=torch.float, device=device),
'end_effector': torch.tensor(0.0394685, dtype=torch.float, device=device),
}
if planner_name == 'sphere':
planner = SPARROWS_3D_planner(
rob,
dtype = dtype,
device=device,
sphere_device=device,
spheres_per_link=params.num_spheres,
joint_radius_override=joint_radius_override,
linear_solver=params.solver,
)
stats['spheres_armtd'] = evaluate_planner(
planner=planner,
planner_name=f'sphere_{params.robot_type}_t{params.time_limit}_tol{params.tol}',
n_envs=params.n_envs,
n_steps=params.n_steps,
n_links=params.n_links,
n_obs=params.n_obs,
save_success_trial_id=params.save_success,
video=params.video,
reachset_viz=params.reachset,
time_limit=params.time_limit,
detail=params.detail,
t_final_thereshold=params.t_final_thereshold,
tol = params.tol,
)
else:
model_dir = os.path.join(os.path.dirname(__file__), 'trained_models')
planner = CROWS_3D_planner(
rob,
dtype = dtype,
device=device,
sphere_device=device,
spheres_per_link=params.num_spheres,
joint_radius_override=joint_radius_override,
linear_solver=params.solver,
model_dir = model_dir,
use_learned_grad = not params.not_use_learned_grad,
confidence_idx = params.confidence_idx
)
learned_grad_identifier = '' if params.not_use_learned_grad else '_LG'
stats['crows'] = evaluate_planner(
planner=planner,
planner_name=f'crows_conf{params.confidence_idx}{learned_grad_identifier}_{params.robot_type}_t{params.time_limit}_tol{params.tol}',
n_envs=params.n_envs,
n_steps=params.n_steps,
n_links=params.n_links,
n_obs=params.n_obs,
save_success_trial_id=params.save_success,
video=params.video,
reachset_viz=params.reachset,
time_limit=params.time_limit,
detail=params.detail,
t_final_thereshold=params.t_final_thereshold,
tol = params.tol,
)