-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutility.py
889 lines (724 loc) · 33 KB
/
utility.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
import os
import pdb
import re
from itertools import groupby, product
import fcsparser
import matplotlib.cm as cmx
import matplotlib.colors as colors
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import yaml
from scipy.stats import gaussian_kde
import cytoflow as flow
import cytoflow.utility as cutil
def get_allstats_table(fc_list, settings):
conditions_n = len(fc_list)
all_stats = pd.DataFrame()
for fc in fc_list:
for mexp in fc.metaexps:
stats = {}
stats['CB Number'],stats['Day'], stats['S0_period'], stats['Treatment'] = mexp.com
stats['Miller Exp Number'] = "Exp_{0!s}".format(mexp.EXP_NAME)
# save each item in a table
stats = dict(stats.items() + mexp.stats.items())
all_stats = all_stats.append(stats, ignore_index=True)
all_stats.to_pickle("pickles/{0!s}_flow_stats.pickle".format(settings['EXP_NAME']))
return(all_stats)
def write_tables(file_path, table_dict):
with open(file_path, 'w') as infile:
infile.write("P1 Cumulatiave Fold Change \n")
with open(file_path, 'a') as infile:
table_dict['s1_fc_prod'].to_csv(infile, sep="\t")
infile.write("\nTNC Cumulatiave Fold Change (TNC) \n")
table_dict['s0_s1_fc_TNC'].to_csv(infile, sep="\t")
infile.write("\nTNC Cumulatiave Fold Change (CD34)\n")
table_dict['s0_s1_fc_CD34'].to_csv(infile, sep="\t")
infile.write("\nTNC Cumulatiave Fold Change (CD34 CD90)\n")
table_dict['s0_s1_fc_CD34_CD90'].to_csv(infile, sep="\t")
def consolidate_settings(user_settings, exp_settings):
"""
Pulls user settings and experiment settings from respective files. Experiment settings override user settings.
Parameters
----------
user_settings : str
exp_settings : str
Returns
_______
settings : dict
"""
with open(user_settings, 'r') as f:
user_dict = yaml.load(f)
with open(exp_settings, 'r') as f:
exp_dict = yaml.load(f)
# overlapping arguments/keys are overridden with new value from the experiment
combined = user_dict.copy()
combined.update(exp_dict)
return(combined)
def point_slope(x1,y1, x2,y2):
slope = (y2-y1)/float(x2-x1)
return slope
def get_settings(exp_num, user="default"):
exp_settings = "config/exp_{0!s}_config.yml".format(exp_num)
user_settings = "config/user_{}.yml".format(user)
settings = consolidate_settings(user_settings, exp_settings)
return(settings)
def elbow_criteria(x,y):
x = np.array(x)
y = np.array(y)
# Slope between elbow endpoints
if y[1] > y[0]:
x = np.delete(x, 0)
y = np.delete(y, 0)
m1 = point_slope(x[0], y[0], x[-1], y[-1])
# Intercept
b1 = y[0] - m1*x[0]
# Slope for perpendicular lines
m2 = -1/m1
# Calculate intercepts for perpendicular lines that go through data point
b_array = y-m2*x
x_perp = (b_array-b1)/(m1-m2)
y_perp = m1*x_perp+b1
# Calculate where the maximum distance to a line connecting endpoints is
distances = np.sqrt((x_perp-x)**2+(y_perp-y)**2)
index_max = np.where(distances==np.max(distances))[0][0]
elbow_x = x[index_max]
elbow_y = y[index_max]
return elbow_x, elbow_y
def generate_isotypes(combos, iter_param, all_gated_data, EXP_NAME):
isotype_table = pd.DataFrame()
for com_number,com in enumerate(combos):
query_str=get_query(com, iter_param)
gated_subset = all_gated_data.query(query_str)
iso_exp_subset = gated_subset.query('Isotype == True and Live == True')
exp_subset = gated_subset.query('Isotype == False and Live == True')
condition_entry = dict(zip(['Exp_'+x for x in iter_param.keys()], com))
condition_entry.update(dict(zip(['Iso_'+x for x in iter_param.keys()], com)))
condition_entry.update({"N_Exp": len(exp_subset.data), "N_Iso": len(iso_exp_subset.data)})
isotype_table = isotype_table.append(pd.Series(condition_entry), ignore_index = True)
# Save the isotype table as a tsv file.
isotype_table.to_csv("data/"+EXP_NAME+'_isotype_table.txt',sep='\t', index=False)
return(isotype_table)
def get_channel_data(gated_comp, x_channel, y_channel):
xscale = cutil.scale_factory('logicle', gated_comp, x_channel)
yscale = cutil.scale_factory('logicle', gated_comp, y_channel)
x = xscale(gated_comp[x_channel].values)
y = yscale(gated_comp[y_channel].values)
#x = gated_comp[x_channel].values
#y = gated_comp[y_channel].values
xy = np.vstack([x,y])
z = gaussian_kde(xy)(xy)
#idx = z.argsort()
#x,y,z = x[idx], y[idx], z[idx]
return(x,y,z)
def generate_indices(exp, iter_param, x='Day'):
"""Generate indices based on an experiment and how it iterates
Args:
exp (exp object): experiment with treatment column and day column
Returns:
list of tuples describing the order in which the treatment, day combos will be placed on a grid
"""
conditions = 1
for key in iter_param.keys():
if x not in key:
conditions = len(exp.data[key].unique()) * conditions
treatment_n = conditions
day_n = len(exp.data['Day'].unique())
ind_list =[]
for x in range(day_n):
for y in range(treatment_n):
ind_list.append((x,y))
return(ind_list)
def make_surface_group(metaexp_list, day = 7):
"""
sets a reference surface group.
returns:
dict['ref_exp']
dict['mexp_list']
"""
# get each combo of metaexp
combos = []
for mexp in metaexp_list:
if mexp.hasExp:
combos.append((mexp.com + (mexp,)))
res_list = [list(v) for l,v in groupby(sorted(combos, key=lambda x:(x[1], x[2])), lambda x: (x[1],x[2]))]
final_groups = []
for res in res_list:
possible_days = [x[0] for x in res]
com_string = [str(x[0])+'_'+str(x[1])+'_'+str(x[2])]
possible_ind = [x for x,y in enumerate(possible_days) if y in day]
# if there are very few choices for negative controls, select the last possible day.
if len(possible_ind) < 1:
possible_ind = [-1]
rgroup = {}
rgroup['ref_exp'] = res[possible_ind[0]][-1]
rgroup['mexp_list'] = [x[-1] for x in res]
rgroup['com_string'] = com_string
final_groups.append(rgroup)
return(final_groups)
## Goal is to calculate:
# total TNC produced per input cell from S1 and in S1 and S0
# total viable TNC produced per input cell from S1 and in S1 and S0
# total MKs per total S0 TNC input cell
# total MKs per total S0 CD34 input cell
# total viable MKs per total S0 TNC cell
# total viable MKs per total S0 CD34 cell
# Day by day fold change
# day by day fold change of MKs. number of MKs day 1/number of MKs day 0
# day by day fold change of viable MKs. number of MKs day 1/number of MKs day 0
# viability table
# exp, cb number, day 0, day 3, day
def lineplot(p):
"""
todo: the background of plot is greyscale and the lines are gray instead of black. very annoying
"""
plt.style.use('grayscale')
plt.style.use('astroml')
fig, ax = plt.subplots(figsize=(7, 4))
ax.plot(p['x'], p['y'], color = 'k', linestyle='-', marker ='o', lw=2)
ax.set_xlim(p['x_lim'])
ax.set_xlabel(p['x_label'].replace('_',' '))
ax.set_ylabel(p['y_label'].replace('_',' '))
ax.set_title('{0!s}'.format(p['title']))
fig.tight_layout()
fig.savefig(p['fig_path'])
def get_production_perMK(cumul_prod_list, header, all_stats, s0_name = ['S0 TNC', 'S0 CD34', 'S0 CD34 CD90']):
melted_list = []
for cumul_prod in cumul_prod_list:
melted = pd.melt(cumul_prod, header)
melted['variable'].replace(regex=True, inplace=True, to_replace=r'\D',value=r'')
melted.rename(columns = {'variable':'Day'}, inplace=True)
melted_list.append(melted)
current = melted_list[0].rename(columns={'variable':'Day', 'value': 'Cumul TNC per ' + s0_name[0]})
for i, frame in enumerate(melted_list[1:], 1):
current = current.merge(frame, on=header+['Day']).rename(columns={'variable':'Day','value': 'Cumul TNC per ' + s0_name[i]})
current['Day'] = current['Day'].astype(int)
combined = current.merge(all_stats, how='outer', on=header+['Day'])
for s0 in s0_name:
combined['Viable Cumul TNC per '+ s0] = combined['Cumul TNC per ' + s0] * combined['viability']
combined['Viable Cumul 41p MK per ' + s0] =combined['Cumul TNC per '+s0]*combined['CD41p']*combined['viability']
combined['Viable Cumul 41p42p MK per ' + s0] = combined['Cumul TNC per ' + s0] *combined['CD41p_CD42p']*combined['viability']
return(combined)
def get_s0_fc(s0_col_name, s0_parsed, s1_fc_prod):
df1 = s1_fc_prod.ix[:,3:]
df2 = pd.concat([s0_parsed[s0_col_name]]*(s1_fc_prod.shape[1]-3), axis = 1)
if s0_col_name == "S0 Fold Expansion VPA CD34+":
df3 = pd.concat([100/s0_parsed['S0 Percentage VPA CD34+']]*(s1_fc_prod.shape[1]-3), axis = 1)
total = pd.DataFrame(df1.values*df2.values*df3.values, columns=df1.columns, index=df1.index)
elif s0_col_name == "S0 Fold Expansion VPA CD34+ CD90+":
df3 = pd.concat([100/s0_parsed['S0 Percentage VPA CD34+ CD90+']]*(s1_fc_prod.shape[1]-3), axis = 1)
total = pd.DataFrame(df1.values*df2.values*df3.values, columns=df1.columns, index=df1.index)
else:
total = pd.DataFrame(df1.values*df2.values, columns=df1.columns, index=df1.index)
header = s1_fc_prod.ix[:,:3]
return(pd.concat([header, total], axis=1))
def import_s0_expansion():
df = pd.read_csv('data/s0_expansion_data.csv',encoding="utf-8-sig")
df = df.dropna(axis=0,how='all')
return(df)
def get_s0_results(raw_results, s0):
header = raw_results.ix[:,:3]
combined = header.merge(s0, how='left',on=['CB Number', 'PRE-EXPANSION DAY'])
return(combined)
def import_s1_expansion(EXP_NUMBER):
try:
df = pd.read_csv('data/exp_{0!s}_s1_expansion.csv'.format(EXP_NUMBER), encoding="utf-8-sig", sep=',')
except IOError:
print("Exp {0!s} does not have expansion data.".format(EXP_NUMBER))
return((None, None, None))
if df.shape[1] == 1:
df = pd.read_csv('data/exp_{0!s}_s1_expansion.csv'.format(EXP_NUMBER), encoding="utf-8-sig", sep='\t')
df = df.dropna(axis=0,how='all')
fc = df.ix[:,:3].copy()
fc_prod = df.ix[:,:3].copy()
running_fc = pd.Series(1, index=range(len(df)))
col_name = df.ix[:,3].name
if col_name == 'Day 0':
fc['Day 0'] = pd.Series(1,index=range(len(df)))
fc_prod['Day 0'] = pd.Series(1,index=range(len(df)))
for i in range(3, len(df.columns), 2):
col_name = df.ix[:,i+1].name
fc[col_name] = df.ix[:,i+1]/df.ix[:,i]
current_fc = df.ix[:,i+1]/df.ix[:,i]
running_fc = running_fc.multiply(current_fc)
fc_prod[col_name] = running_fc
#if EXP_NUMBER == "18" :
# pdb.set_trace()
return(df,fc, fc_prod)
# metaexp will parse table, get corresponding fc in S0 and S1
def parse_comp_sets(unique_voltages, tube_subset, volt_labels):
""" Parses unique voltages and tube df to get a list of tube dicts for each tube
Args:
unique_voltages (dict): a dict with a list of voltages?
tube_subset (df): a df with all surface and compensation tubes
Return:
dataframe with experiments
"""
# For each voltage
surface_list = []
best_comp_path_list = []
all_comp_path_list = []
for volt in unique_voltages:
target_voltage = dict(zip(volt_labels, volt))
best_compensation_paths, all_compensation_paths = get_comp_tubes(target_voltage,tube_subset)
best_comp_path_list.append(best_compensation_paths)
all_comp_path_list.append(all_compensation_paths)
surface_subset = tube_subset[tube_subset.isin(dict([ (x[0],[x[1]]) for x in target_voltage.items()]))[volt_labels].all(1)]
surface_subset = surface_subset[surface_subset['TUBE TYPE'] == 'SURFACE']
surface_list.append(surface_subset)
e_list = []
for tube_set in surface_list:
if len(tube_set) > 0:
tube_list = []
for ind, row in tube_set.iterrows():
## experiments the following attributes
## Day (1-x)
## Expansion (5 or 7) - PRE-EXPANSION DAY
## Isotype (boolean)
## Treatment
tube = flow.Tube(file = row['PATH'], conditions = {"Day":row['DAY'],
"Expansion":row['PRE-EXPANSION DAY'],
"Isotype":row['ISOTYPE'],
"Treatment":row['TREATMENT'],
"Replicate":row['REPLICATE'],
"CB Number":row['CB Number'],
"EXP": row['EXP']})
tube_list.append(tube)
import_op = flow.ImportOp(conditions = {'Day' : 'int',
'Expansion' : 'category',
'Isotype' : 'bool',
'Treatment' : 'category',
'Replicate' : 'int',
'CB Number' : 'category',
'EXP' : 'int'} , tubes = tube_list)
exp_part = import_op.apply()
e_list.append(exp_part)
return(e_list, best_comp_path_list, all_comp_path_list)
def get_volts(tube_subset):
""" Read pd df and identify unique volts
Args:
tube_subset (df): tube df
Return:
list of tuples? or a dict, I forgot
"""
volt_labels = [x for x in tube_subset.columns if '-' in x]
volt_labels = [x for x in volt_labels if 'PRE-EXPANSION DAY' not in x]
all_voltages = tube_subset.groupby(volt_labels)
unique_voltages = []
for g,data in all_voltages:
unique_voltages.append(g)
return(unique_voltages, volt_labels)
def read_surface_tube_table(TUBE_FILE):
""" Read a csv file with the preliminary assignments for each tube.
Args:
TUBE_FILE (str): tube path
Returns:
pandas dataframe with formatted surface tubes
"""
expt_tubes = pd.read_csv(TUBE_FILE, sep = '\t')
### Convert columns into valid datatypes
surface_tubes = expt_tubes[expt_tubes['TUBE TYPE'] == 'SURFACE']
#surface_tubes[['DAY']] = surface_tubes[['DAY']].apply(pd.to_numeric)
surface_tubes[['DAY']] = surface_tubes[['DAY']].convert_objects(convert_numeric=True)
### Assign additional statistics such as preliminary isotype pairing to each treatment file
for ind, row in surface_tubes.iterrows():
if row["ISOTYPE"] == False:
result = surface_tubes[(surface_tubes["DAY"] == row["DAY"]) & (surface_tubes['PRE-EXPANSION DAY'] == row["PRE-EXPANSION DAY"]) & (surface_tubes['ISOTYPE'] == True)]
if len(result) > 0:
iso_path = result["PATH"].values[0]
else:
iso_path = "none"
surface_tubes.loc[ind, 'ISO_FILE'] = iso_path
else:
surface_tubes.loc[ind, 'ISO_FILE'] = surface_tubes.loc[ind, 'PATH']
return(surface_tubes, expt_tubes)
def generate_combos(iter_param, exp):
"""Generate combinations based on relevant parameters.
Args:
iter_param (dict) : param or column name (key) : datatype such as str, bool, int, etc (value)
exp (exp object): experimental object
Returns:
a list of tuples representing possible combinations
"""
all_items = []
for param in sorted(iter_param.iterkeys()):
items = np.sort(exp.data[param].dropna().unique())
#items = [x for x in items if x != np.nan]
all_items.append(items)
# Generate all combinations
combos = []
for items in product(*all_items):
combos.append(items)
return(combos)
def gate_size(exp):
"""Gate-based on size (fixed, hard-coded values).
Todo:
add method for variable size gate
Args:
Exp (exp obj): experiment to be size-gated
Returns:
Experiment with size gated data
"""
#2D range is:
# xlow = 6504.61128019, xhigh = 260998.080801, ylow = 99.2728755467, yhigh=187986.103224
r2d = flow.Range2DOp(name = "Size",
xchannel = "FSC-A",
ychannel = "SSC-A",
xlow = 1000.61128019,
xhigh = 260998.080801,
ylow = 99.2728755467,
yhigh=187986.103224)
r2d.default_view(huefacet = "Treatment").plot(exp)
size_exp = r2d.apply(exp)
return(size_exp)
def get_fluormap(config='None'):
fluormap = {}
fluormap['CD34'] = "PE-A"
fluormap['CD41'] = "FITC-A"
fluormap['CD42'] = "APC-A"
if config == 'exp_6':
fluormap['CD34'] = "FITC-A"
fluormap['CD41'] = "APC-A"
fluormap['CD42'] = "PE-A"
return(fluormap)
def get_iter_param():
iter_param = {'Expansion':'str', 'Day':'int', 'Treatment':'str', 'CB Number':'str'}
return(iter_param)
def plot_percent_comparison(color_table, line_map, treatment_color_map, timepoints = [0,3,5,7,9,11,13]):
treatment_group =color_table.groupby(['Expansion', 'Treatment'])
f, ax_tuple = plt.subplots(1, 4, figsize=(30,4))
CD34_list = []
CD41_list = []
CD42_dp_list = []
CD42_sp_list = []
day_list = []
for num,(name, group) in enumerate(treatment_group):
if len(group) < 1:
continue
linestyle = line_map[name[0]]
c = treatment_color_map[name[1]]
group = group.sort('CD41+ CD42+').drop_duplicates(subset=['Day', 'Expansion', 'Treatment'], take_last=True).sort('Day')
CD34=group['CD34+ CD41-'].values
CD41=group['CD34- CD41+'].values
CD42_dp=group['CD41+ CD42+'].values
CD42_sp=group['CD41+ CD42-'].values
day = group['Day'].values
CD34_list.append(CD34)
CD41_list.append(CD41)
CD42_dp_list.append(CD42_dp)
CD42_sp_list.append(CD42_sp)
day_list.append(day)
ax1 = ax_tuple[0]
ax2 = ax_tuple[1]
ax3 = ax_tuple[2]
ax4 = ax_tuple[3]
ax1.plot(day, [x*100 for x in CD34], linestyle = linestyle,marker='o', color = c, label = name)
ax2.plot(day, [x*100 for x in CD41], linestyle = linestyle, marker = 'o', color = c, label = name)
ax3.plot(day, [x*100 for x in CD42_dp], linestyle = linestyle, marker = 'o', color = c, label = name)
ax4.plot(day, [x*100 for x in CD42_sp], linestyle = linestyle, marker = 'o', color = c, label = name)
ax1.set_ylabel('% CD34 Positive Cells')
ax2.set_ylabel('% CD41 Positive Cells')
ax3.set_ylabel('% CD42 Positive/CD41 Positive Cells')
ax4.set_ylabel('% CD42 Positive/CD41 Negative Cells')
all_axes = [ax1, ax2, ax3, ax4]
for ax in all_axes:
ax.grid(False)
ax.set_ylim([0,100])
ax.set_xticks(timepoints)
ax.set_xlabel('Day')
legend = ax1.legend(loc='upper right', markerscale = 0.1)
def plot_percent_grid(color_table,timepoints = [0,3,5,7,9,11,13] ):
treatment_group =color_table.groupby(['Expansion', 'Treatment'])
f, ax_tuple = plt.subplots(len(treatment_group), 4, figsize=(30,4*(len(treatment_group))), squeeze=False)
for num,(name, group) in enumerate(treatment_group):
if len(group) < 1:
continue
group = group.sort('CD41+ CD42+').drop_duplicates(subset=['Day', 'Expansion', 'Treatment'], take_last=True).sort('Day')
CD34=group['CD34+ CD41-'].values
CD41=group['CD34- CD41+'].values
CD42_dp=group['CD41+ CD42+'].values
CD42_sp=group['CD41+ CD42-'].values
day = group['Day'].values
ax1 = ax_tuple[num][0]
ax2 = ax_tuple[num][1]
ax3 = ax_tuple[num][2]
ax4 = ax_tuple[num][3]
ax1.plot(day, [x*100 for x in CD34], 'ko-')
ax2.plot(day, [x*100 for x in CD41], 'ko-')
ax3.plot(day, [x*100 for x in CD42_dp], 'ko-')
ax4.plot(day, [x*100 for x in CD42_sp], 'ko-')
ax1.set_ylabel('% CD34 Positive Cells')
ax2.set_ylabel('% CD41 Positive Cells')
ax3.set_ylabel('% CD42 Positive/CD41 Positive Cells')
ax4.set_ylabel('% CD42 Positive/CD41 Negative Cells')
all_axes = [ax1, ax2, ax3, ax4]
ax1.text(.5, .9, name[0] + ' ' + name[1] + ' | Live CD34+ Cell %', horizontalalignment = 'center', transform = ax1.transAxes)
ax2.text(.5, .9, name[0] + ' ' + name[1] + ' | Live CD41+ Cell %', horizontalalignment = 'center', transform = ax2.transAxes)
ax3.text(.5, .9, name[0] + ' ' + name[1] + ' | Live CD42+/CD41 Cell %', horizontalalignment = 'center', transform = ax3.transAxes)
ax4.text(.5, .9, name[0] + ' ' + name[1] + ' | Live CD42+/CD41- Cell %', horizontalalignment = 'center', transform = ax4.transAxes)
for ax in all_axes:
ax.grid(False)
ax.set_ylim([0,100])
ax.set_xticks(timepoints)
ax.set_xlabel('Day')
f.subplots_adjust(hspace=.3)
def subset_by_condition(exp, condition_list):
"""
Given an experiment and condition list, it divides the experiment
into several different experiments.
"""
result_list = []
gps = exp.data.groupby(condition_list)
gps_keys = gps.groups.keys()
for key in gps_keys:
result_dict = {}
query = str('')
for condition, value in zip(condition_list, key):
result_dict[condition] = value
query += '{} == "{}" and '.format(condition, value)
query = query.rstrip(' and ')
subexp= exp.query(query)
result_dict['exp'] = subexp
result_list.append(result_dict)
return(result_list)
def get_compensation_gates(compensation_paths):
tube_list = []
for color in compensation_paths.keys():
tube = flow.Tube(file = compensation_paths[color], conditions = {"Color":color})
tube_list.append(tube)
import_op = flow.ImportOp(conditions = {'Color' : 'category'},tubes = tube_list)
comp_ex = import_op.apply()
g = flow.GaussianMixture2DOp(name = "Debris_Filter",
xchannel = "FSC-A",
xscale = "logicle",
ychannel = "SSC-A",
yscale = "logicle",
num_components = 4,
sigma = 2)
g.estimate(comp_ex)
bead_coords = g.default_view().plot(comp_ex,get_coords = 3)
gated_comp = g.apply(comp_ex)
gated_comp.data
color = 'PE-A'
my_subset = "Color == '" + color +"' and Debris_Filter == 'Debris_Filter_3'"
flow.HistogramView(channel = color, subset = my_subset).plot(gated_comp)
bead_coords = [tuple(l) for l in bead_coords]
# Create polygon gate out of gaussian gate
bead_gate = flow.PolygonOp(name = "Bead", xchannel = "FSC-A", ychannel = "SSC-A", vertices=bead_coords)
pgated_comp = bead_gate.apply(comp_ex)
bl_op = flow.BleedthroughLinearOp()
bl_op.controls = compensation_paths
bl_op.estimate(pgated_comp, subset = "Bead == True")
bl_op.default_view().plot(pgated_comp)
return(bl_op, pgated_comp, bead_coords)
def get_isotype_gates(gated_subset):
## Get the isotype gate.
g_pe_fitc = flow.GaussianMixture2DOp(name = "PE-FITC-GM",
xchannel = "PE-A",
xscale = "logicle",
ychannel = "FITC-A",
yscale = "logicle",
num_components = 1,
sigma = 5)
g_pe_fitc.estimate(gated_subset)
pe_fitc_iso_gate = g_pe_fitc.default_view().plot(gated_subset,get_coords = 'bl')
pf_right_corner = max(pe_fitc_iso_gate,key=lambda item:item[0]**2+item[1]**2)
qg_pf =flow.QuadOp(name="PE-FITC", xchannel = "PE-A", ychannel = "FITC-A", xthreshold = pf_right_corner[0], ythreshold = pf_right_corner[1])
g_fitc_apc = flow.GaussianMixture2DOp(name = "FITC-APC-GM",
xchannel = "FITC-A",
xscale = "logicle",
ychannel = "APC-A",
yscale = "logicle",
num_components = 1,
sigma = 4)
g_fitc_apc.estimate(gated_subset)
fitc_apc_iso_gate = g_fitc_apc.default_view().plot(gated_subset,get_coords = 'bl')
fa_right_corner = max(fitc_apc_iso_gate,key=lambda item:item[0]**2+item[1]**2)
qg_fa =flow.QuadOp(name="FITC-APC", xchannel = "FITC-A", ychannel = "APC-A", xthreshold = fa_right_corner[0], ythreshold = fa_right_corner[1])
return(qg_pf, qg_fa)
def get_query(com, iter_param):
query_str = ""
for ix,param in enumerate(sorted(iter_param.iterkeys())):
parsed_param = str(param).replace(" ","_")
if iter_param[param] == 'str':
query_str = query_str + str(parsed_param) + ' == ' + "\"" +str(com[ix])+ "\"" + ' and '
elif iter_param[param] == 'int':
query_str = query_str + str(parsed_param) + ' == ' +str(com[ix]) + ' and '
query_str = re.sub(' and $', '', query_str)
return(query_str)
def convert_coords(coords):
# takes a list of lists, converts to list of tuples
return([tuple(l) for l in coords])
def get_logicle(my_exp,channels, log=False):
if not log:
logicle = flow.LogicleTransformOp()
logicle.channels = channels
logicle.estimate(my_exp)
else:
logicle = flow.LogTransformOp()
return(logicle.apply(my_exp))
def get_2d_mask(xaxis,yaxis,axis_list, mat):
x_idx = axis_list.index(xaxis)
y_idx = axis_list.index(yaxis)
mask = np.array([x_idx,y_idx])
mat_2d = mat[mask[:,None], mask]
return(mat_2d)
def get_gated_comp(comp_ex, color, plt = True, sigma = 1):
query_str = "Color == '" + color + "'"
color_comp = comp_ex.query(query_str)
g = flow.GaussianMixture2DOp(name = "Debris_Filter",
xchannel = "FSC-A",
xscale = "logicle",
ychannel = "SSC-A",
yscale = "logicle",
num_components = 5,
sigma = sigma)
g.estimate(color_comp)
if plt:
g.default_view().plot(color_comp)
gated_comp = g.apply(color_comp)
return(gated_comp)
def plot_compensation_grid(comp_ex, corrected_comp_ex, color, channels, log=False):
f, axarr = plt.subplots(3)
#gated_comp = get_gated_comp(comp_ex, color, plt=False)
#corrected_gated_comp = get_gated_comp(corrected_comp_ex, color, plt=False)
my_subset = "Color == '" + color +"' and Bead == True"
gated_comp = comp_ex.query(my_subset)
corrected_gated_comp = corrected_comp_ex.query(my_subset)
gated_comp = get_logicle(gated_comp,channels, log = log)
corrected_gated_comp = get_logicle(corrected_gated_comp,channels, log = True)
plotted = []
i = 0
for from_idx, from_channel in enumerate(channels):
for to_idx, to_channel in enumerate(channels):
if (from_idx == to_idx) or ((to_idx,from_idx) in plotted):
continue
# Three subplots sharing both x/y axes
xc = channels[from_idx]
yc = channels[to_idx]
x,y,z = get_channel_data(gated_comp, xc, yc)
axarr[i].scatter(x, y, c=z, edgecolor = '', antialiased=True, alpha = 0.4, s=2, marker='o', cmap=plt.get_cmap('Blues'))
axarr[i].set_xlabel(xc, fontsize=12)
axarr[i].set_ylabel(yc, fontsize=12)
x2,y2,z2 = get_channel_data(corrected_gated_comp, xc, yc)
axarr[i].scatter(x2, y2, c=z2, edgecolor = '', antialiased=True, alpha = 0.4, s=2, marker='o', cmap=plt.get_cmap('Spectral_r'))
# Fine-tune figure; make subplots close to each other and hide x ticks for
# all but bottom plot.
plotted.append((from_idx, to_idx))
i += 1
f.subplots_adjust(hspace=0.5)
#plt.setp([a.get_xticklabels() for a in f.axes[:-1]], visible=True)
f.suptitle(color + " Beads", fontsize=14)
def parse_tube_type(parentdir, meta):
bead_names = ['beads', 'apc', 'fitc', 'pe','bv']
if 'ploidy' in parentdir.lower():
tube_type = 'PLOIDY'
elif 'platelet' in parentdir.lower():
tube_type = 'PLATELET'
day = 'NA'
vpa_day = 'NA'
treatment = 'NA'
elif any(x in meta['TUBE NAME'].lower() for x in bead_names) and 'iso' not in meta['TUBE NAME'].lower():
tube_type = 'BEADS'
day = 'NA'
vpa_day = 'NA'
treatment = 'NA'
else:
tube_type = 'SURFACE'
return(tube_type)
def get_tube_info(path, EXP_NUMBER = 16, DEFAULT_CB='nan'):
parentdir = path.split('/')[-2]
tube_info = [('PARENT FOLDER',parentdir)]
meta = fcsparser.parse(path, meta_data_only=True, reformat_meta=True)
# Get color/channel dictionary
color_channel = dict(zip(meta['_channels_']['$PnN'], meta['_channels_'].index.tolist()))
color_channel = {color:"$P{}V".format(channel) for color, channel in color_channel.items()}
#color_channel = pd.DataFrame(color_channel, columns=['Channel Name', 'Current Channel Number'])
# Get channel/volt dictionary
channel_volt={k:v for k,v in meta.items() if k.startswith('$P')}
# Add color/volt dictionary to the tube_info
color_volt = {color:channel_volt[channel] for color, channel in color_channel.items() if color != 'Time'}
tube_info.extend(color_volt.items())
# Add some selected parameters from the metadata to the tube_info
target_params = ['TUBE NAME', 'EXPERIMENT NAME', '$DATE' ]
param_data = [meta[target_params[x]] for x,param in enumerate(target_params)]
tube_info.extend(zip(target_params,param_data))
# Parse the tube type
tube_type = parse_tube_type(parentdir, meta)
# Parse tube pre-expansion
if tube_type == 'SURFACE' or tube_type == 'PLOIDY':
meta['TUBE NAME'] = path.split('_')[-1].rstrip('.fcs')
if 'e7' in meta['TUBE NAME'].lower():
vpa_day = 'E7'
elif 'e5' in meta['TUBE NAME'].lower():
vpa_day = 'E5'
elif 'e0' in meta['TUBE NAME'].lower():
vpa_day = 'E0'
elif 'e7' in parentdir.lower():
vpa_day = 'E7'
elif 'e5' in parentdir.lower():
vpa_day = 'E5'
elif 'e0' in parentdir.lower():
vpa_day = 'E0'
# determine current day
p = re.compile(r''+ vpa_day + ' Day (\d+)')
print(parentdir)
match = p.search(parentdir)
day = match.group(1)
else:
vpa_day = 'nan'
day = 'nan'
# parse treatment from the tube name
treatment = meta['TUBE NAME']
if 'iso' in meta['TUBE NAME'].lower():
iso_bool = True
else:
iso_bool = False
CB_regex = re.compile('CB([0-9]*)')
CB_number = CB_regex.findall(meta['TUBE NAME'])
if len(CB_number) == 0:
CB_number = DEFAULT_CB
else:
CB_number = 'CB'+CB_number[0]
tube_info.extend([('TUBE TYPE',tube_type)])
tube_info.extend([('TREATMENT',treatment)])
tube_info.extend([('DAY',day)])
tube_info.extend([('PRE-EXPANSION DAY',vpa_day)])
tube_info.extend([('ISOTYPE', iso_bool)])
tube_info.extend([('PATH', path)])
tube_info.extend([('REPLICATE', 1)])
tube_info.extend([('SRC',meta['$SRC'])])
tube_info.extend([('EXP', EXP_NUMBER )])
tube_info.extend([('CB Number', CB_number )])
tube_info = pd.Series(dict(tube_info))
return(tube_info)
def get_comp_tubes(target_voltage,expt_tubes):
compensation = expt_tubes[expt_tubes['TUBE TYPE'] == 'BEADS']
color_names = ['apc','fitc','pe']
converted_color_names = ['APC-A','FITC-A','PE-A']
compensation[converted_color_names] = compensation[converted_color_names].convert_objects(convert_numeric=True)
#compensation[voltage_names] = compensation[voltage_names].apply(pd.to_numeric)
compensation[['$DATE']] = compensation[['$DATE']].apply(pd.to_datetime)
best_comp_tubes = pd.DataFrame()
same_voltage = pd.DataFrame()
for x,current_color in enumerate(color_names):
comp_subset = compensation[(pd.DataFrame([compensation[k] == v for k, v in target_voltage.iteritems()]).all()) & (compensation['TUBE NAME'].str.contains(current_color, case = False))]
same_voltage = same_voltage.append(comp_subset)
if 'BESTCOMP' in comp_subset.columns and len(comp_subset[comp_subset['BESTCOMP']==True]) > 0:
best_tube = comp_subset[comp_subset['BESTCOMP']==True].iloc[0]
else:
best_tube = comp_subset.sort_values('$DATE').min()
best_comp_tubes = best_comp_tubes.append(best_tube, ignore_index=True)
return(best_comp_tubes, same_voltage)
def get_merged_exp(exp_list):
new_exp = exp_list[0].clone()
exp_list.pop(0)
for exp in exp_list:
new_exp.merge_events(exp.data)
return(new_exp)
def get_merged_data(data_list):
new_data = data_list[0].copy()
data_list.pop(0)
for data in data_list:
new_data = new_data.append(data, ignore_index = True)
return(new_data)