Skip to content
This repository has been archived by the owner on Jun 4, 2019. It is now read-only.

Latest commit

 

History

History
64 lines (51 loc) · 1.48 KB

README.MD

File metadata and controls

64 lines (51 loc) · 1.48 KB

Reservoir

Code for reservoir computing.

Usage

The reservoir is constructed by the parameters defined in reservoir.config, which is:

{
    "input": {
        "nodes": 2,
        "functions": [
            "lambda x: np.sin(128 * np.pi * x)",
            "lambda x: x"
        ],
        "length": 5000
    },
    "reservoir": {
        "start_node": 100,
        "end_node": 100,
        "step": 2,
        "degree_function": "lambda x: np.sqrt(x)",
        "sigma": 0.5,
        "bias": 1,
        "leakage_rate": 0.3,
        "regression_parameter": 1e-08
    },
    "output": {
        "nodes": 2
    },
    "training": {
        "init": 1000,
        "train": 3000,
        "test": 2000,
        "error": 1000
    }
}

It will generate the prediction.

For one single signal input:
sin(t):

For two signals input:
sin(t) and t:

For three singals input:
Lorenz System:

Rössler System:

The result will be gathered in the file reservoir.output, you can visualize it by running ./visualize.py reservoir.output or ./visualize3d.py reservoir.output