-
Notifications
You must be signed in to change notification settings - Fork 85
/
Copy pathdecoder.py
83 lines (71 loc) · 2.94 KB
/
decoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
'''
@File : decoder.py
@Time : 2020/03/09
@Author : jhhuang96
@Mail : [email protected]
@Version : 1.0
@Description: decoder
'''
from torch import nn
from utils import make_layers
import torch
class Decoder(nn.Module):
def __init__(self, subnets, rnns):
super().__init__()
assert len(subnets) == len(rnns)
self.blocks = len(subnets)
for index, (params, rnn) in enumerate(zip(subnets, rnns)):
setattr(self, 'rnn' + str(self.blocks - index), rnn)
setattr(self, 'stage' + str(self.blocks - index),
make_layers(params))
def forward_by_stage(self, inputs, state, subnet, rnn):
inputs, state_stage = rnn(inputs, state, seq_len=10)
seq_number, batch_size, input_channel, height, width = inputs.size()
inputs = torch.reshape(inputs, (-1, input_channel, height, width))
inputs = subnet(inputs)
inputs = torch.reshape(inputs, (seq_number, batch_size, inputs.size(1),
inputs.size(2), inputs.size(3)))
return inputs
# input: 5D S*B*C*H*W
def forward(self, hidden_states):
inputs = self.forward_by_stage(None, hidden_states[-1],
getattr(self, 'stage3'),
getattr(self, 'rnn3'))
for i in list(range(1, self.blocks))[::-1]:
inputs = self.forward_by_stage(inputs, hidden_states[i - 1],
getattr(self, 'stage' + str(i)),
getattr(self, 'rnn' + str(i)))
inputs = inputs.transpose(0, 1) # to B,S,1,64,64
return inputs
if __name__ == "__main__":
from net_params import convlstm_encoder_params, convlstm_forecaster_params
from data.mm import MovingMNIST
from encoder import Encoder
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
encoder = Encoder(convlstm_encoder_params[0],
convlstm_encoder_params[1]).cuda()
decoder = Decoder(convlstm_forecaster_params[0],
convlstm_forecaster_params[1]).cuda()
if torch.cuda.device_count() > 1:
encoder = nn.DataParallel(encoder)
decoder = nn.DataParallel(decoder)
trainFolder = MovingMNIST(is_train=True,
root='data/',
n_frames_input=10,
n_frames_output=10,
num_objects=[3])
trainLoader = torch.utils.data.DataLoader(
trainFolder,
batch_size=8,
shuffle=False,
)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
for i, (idx, targetVar, inputVar, _, _) in enumerate(trainLoader):
inputs = inputVar.to(device) # B,S,1,64,64
state = encoder(inputs)
break
output = decoder(state)
print(output.shape) # S,B,1,64,64