forked from harmening/phrase-frequency-counter
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcounter.py
executable file
·207 lines (189 loc) · 6.92 KB
/
counter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
from matplotlib import pyplot as plt
import numpy as np
import operator, string, re
import spacy
nlp = spacy.load('en')
from numerics import counter_c, counter_c_sent
# chose if counting happens within each SENTENCE or DOCUMENT:
LEVEL = 'SENTENCE' # 'DOCUMENT'
# Python 3 compatibility hack
try:
unicode('')
except NameError:
unicode = str
def hirsch_index(tuples):
try:
phr_len = len(tuples[0][0].split())
except:
phr_len = 0
h = {}
for i in range(len(tuples)):
if len(tuples[i][0].split()) != phr_len:
phr_len = len(tuples[i][0].split())
num_of_ids = 0
for j in range(len(tuples[i][1])):
num_of_ids += len(tuples[i][1][j])
h[tuples[i][0]] = min(phr_len, num_of_ids)
sorted_h = sorted(h.items(), key=operator.itemgetter(1))
l = len(sorted_h)
for i in range(1,l):
if sorted_h[-i][1] < i:
hidx = i-1
break
return hidx
def plot_matrix(matrix):
plt.subplot(1, 2, 1); plt.gca().invert_xaxis()
plt.plot(matrix[:,0],matrix[:,1])
plt.xlabel("Phrase length"); plt.ylabel("Number of different phrases")
plt.subplot(1, 2, 2); plt.gca().invert_xaxis()
plt.plot(matrix[:,0],matrix[:,2])
plt.xlabel("Phrase length"); plt.ylabel("Appearence of all phrases")
plt.savefig('phrases.png')
#small helpers
def get_substrings(input_string, substring_length):
lst = input_string.split()
return [' '.join(lst[i:i+substring_length]) for i in
range(len(lst)-substring_length+1)]
def get_substrings_list(input_list, substring_length):
lst = []
for i in input_list:
for j in get_substrings(i, substring_length):
lst.append(j)
return lst
########## Analysis ##########
def analysis(tuples):
try:
max_phr_len = len(tuples[0][0].split())
except:
max_phr_len = 0
# create matrix
matrix = np.zeros((max_phr_len, 3), dtype=int)
if max_phr_len > 0:
# 1st entry: phrase length
for i in range(max_phr_len):
matrix[i][0] = max_phr_len-i
for tup in tuples:
print(tup)
if len(tup[1]) > 0:
# 2nd entry: number of different phrases with this phr_len
matrix[max_phr_len-len(tup[0].split())][1] += 1
# 3rd entry: number of all phrase-appearences with this phr_len
num_of_ids = 0
for j in range(len(tup[1])):
num_of_ids += len(tup[1][j])
matrix[max_phr_len-len(tup[0].split())][2] += num_of_ids
return matrix
def counter_nos(mails):
max_num_words, current_word_idx, current_id_idx = 0, 0, 0
word2idx, id2idx = {}, {}
index2word, index2id, messages_as_digits, mids_as_digits = [], [], [], []
# Transform messages of words into sequence of digits
for m, mid in enumerate(mails.keys()):
mail = mails[mid].lower()
mail = re.sub(r'[^\w\s]','',mail)
message = mail.split()
if len(message) > max_num_words:
max_num_words = len(message)
mess_as_digits = []
for word in message:
if word not in word2idx:
word2idx[word] = current_word_idx
current_word_idx += 1
index2word.append(word)
mess_as_digits.append(word2idx[word])
messages_as_digits.append(mess_as_digits)
#ids_as_digits = []
if mid not in id2idx:
id2idx[mid] = current_id_idx
current_id_idx += 1
index2id.append(mid)
mids_as_digits.append(id2idx[mid])
tuples_digits = counter_c(messages_as_digits, mids_as_digits, max_num_words)
tuples = []
# Retransformation
for tup in tuples_digits:
phrase = []
for word_idx in tup[0]:
phrase.append(index2word[word_idx])
ids = []
for id_idx in tup[1]:
ids.append(index2id[id_idx])
tuples.append([" ".join(phrase), [ids]])
return tuples
def counter_s(mails):
current_word_idx, current_id_idx, num_sentences, max_num_words = 0, 0, 0, 0
word2idx, id2idx = {}, {}
index2word, index2id, sentences_as_digits, mids_as_digits = [], [], [], []
#Preprocessing
sentences = []
for m, mid in enumerate(mails.keys()):
sentences_as_digits.append([])
# splitting sentences
doc = nlp(unicode(mails[mid]))#, "utf-8"))
sentences.append([sent.string.strip() for sent in doc.sents])
for s in range(len(sentences[m])):
num_sentences += 1
# strip punctuation for phrase cleaning
sentences[m][s] = sentences[m][s].lower()
for punctuation in string.punctuation:
sentences[m][s] = sentences[m][s].replace(punctuation,"")
if len(sentences[m][s].split()) > max_num_words:
max_num_words = len(sentences[m][s].split())
# Transform messages of words into sequence of digits
sentence = sentences[m][s].split()
sent_as_digits = []
for word in sentence:
if word not in word2idx:
word2idx[word] = current_word_idx
current_word_idx += 1
index2word.append(word)
sent_as_digits.append(word2idx[word])
sentences_as_digits[m].append(sent_as_digits)
if m not in id2idx:
id2idx[m] = current_id_idx
current_id_idx += 1
index2id.append(m)
mids_as_digits.append(id2idx[m])
tuples_digits = counter_c_sent(sentences_as_digits, mids_as_digits,
num_sentences, max_num_words)
# Retransformation
tuples = []
for tup in tuples_digits:
phrase = []
for word_idx in tup[0]:
phrase.append(index2word[word_idx])
ids = []
for id_idx in tup[1]:
ids.append(index2id[id_idx])
tuples.append([" ".join(phrase), [ids]])
return tuples
if __name__ == '__main__':
import sys
if (len(sys.argv) == 2 and sys.argv[1] and len(sys.argv[1]) > 1 ):
pass
else:
print("Run the script with python counter.py <<path_to_mailbox_folder>>")
sys.exit(0)
path = sys.argv[1]
mails = []
for mail in os.listdir(path):
mails.append(mail)
for mail in mails:
# Sentence level
if LEVEL == 'SENTENCE':
tuples = counter_s(mail)
matrix = analysis(tuples)
# Message/document level
elif LEVEL == 'DOCUMENT':
messages = {}
#Preprocessing
for m, this_mail in enumerate(mail):
messages[m] = this_mail.lower()
for punctuation in string.punctuation:
messages[m] = messages[m].replace(punctuation,"")
tuples = counter_nos(messages)
matrix = analysis(tuples)
else:
tuples = matrix = None
hirsch_idx = hirsch_index(tuples)
plot_matrix(matrix)