From d19470606ebb0ebd9294157c6c52dd2315306461 Mon Sep 17 00:00:00 2001 From: Cj Jiang Date: Fri, 9 Aug 2024 11:42:44 +1000 Subject: [PATCH] Restored Fst multithreading, fix watterson_theta header Watterson_theta output was missing Mean_across_windows and subsequently misaligning windows --- src/popgen/fst.rs | 185 +++++++++++++--------------------- src/popgen/watterson_theta.rs | 2 +- 2 files changed, 71 insertions(+), 116 deletions(-) diff --git a/src/popgen/fst.rs b/src/popgen/fst.rs index bb288dd..b8dfc48 100644 --- a/src/popgen/fst.rs +++ b/src/popgen/fst.rs @@ -20,119 +20,74 @@ pub fn fst( let (loci_idx, loci_chr, loci_pos) = genotypes_and_phenotypes.count_loci().unwrap(); let l = loci_idx.len() - 1; // number of loci is loci_idx.len() - 1, i.e. less the last index - index of the last allele of the last locus let mut fst: Array3 = Array3::from_elem((l, n, n), f64::NAN); - - - // Temporary fix to parallel error when window size, slide size and minimum loci per window are all equal to 1. - for i in 0..l { - for j in 0..n { - for k in 0..n { - let idx_start = loci_idx[i]; - let idx_end = loci_idx[i + 1]; - let g = genotypes_and_phenotypes - .intercept_and_allele_frequencies - .slice(s![.., idx_start..idx_end]); - // Make sure that allele frequencies per locus sums up to one - assert!(g.sum_axis(Axis(1)).sum() as usize == n); - let nj = genotypes_and_phenotypes.coverages[(j, i)]; - let nk = genotypes_and_phenotypes.coverages[(k, i)]; - let q1_j = (g.slice(s![j, ..]).fold(0.0, |sum, &x| sum + x.powf(2.0)) - * (nj / (nj - 1.00 + f64::EPSILON))) - + (1.00 - (nj / (nj - 1.00 + f64::EPSILON))); // with a n/(n-1) factor on the heteroygosity to make it unbiased - let q1_k = (g.slice(s![k, ..]).fold(0.0, |sum, &x| sum + x.powf(2.0)) - * (nk / (nk - 1.00 + f64::EPSILON))) - + (1.00 - (nk / (nk - 1.00 + f64::EPSILON))); // with a n/(n-1) factor on the heteroygosity to make it unbiased - let q2_jk = g - .slice(s![j, ..]) - .iter() - .zip(&g.slice(s![k, ..])) - .fold(0.0, |sum, (&x, &y)| sum + (x * y)); - let f_unbiased = (0.5 * (q1_j + q1_k) - q2_jk) / (1.00 - q2_jk + f64::EPSILON); // The reason why we're getting NaN is that q2_jk==1.0 because the 2 populations are both fixed at the locus, i.e. the same allele is at 1.00. - fst[(i, j, k)] = if f_unbiased < 0.0 { - // fst[(i, j, k)] = if f_unbiased < 0.0 { - 0.0 - } else if f_unbiased > 1.0 { - 1.0 - } else { - f_unbiased - }; - // fst[(i, j, k)] = fst[(i, k, j)]; - // println!("fst[(i, j, k)]={:?}", fst[(i, j, k)]); - // println!("fst[(i, k, j)]={:?}", fst[(i, k, j)]); - } - } - } - - - // let loci: Array3 = Array3::from_shape_vec( - // (l, n, n), - // (0..(l)) - // .flat_map(|x| std::iter::repeat(x).take(n * n)) - // .collect(), - // ) - // .unwrap(); - // let pop1: Array3 = Array3::from_shape_vec( - // (l, n, n), - // std::iter::repeat( - // (0..n) - // .flat_map(|x| std::iter::repeat(x).take(n)) - // .collect::>(), - // ) - // .take(l) - // .flat_map(|x| x) - // .collect::>(), - // ) - // .unwrap(); - // let pop2: Array3 = Array3::from_shape_vec( - // (l, n, n), - // std::iter::repeat( - // std::iter::repeat((0..n).collect::>()) - // .take(n) - // .flat_map(|x| x) - // .collect::>(), - // ) - // .take(l) - // .flat_map(|x| x) - // .collect::>(), - // ) - // .unwrap(); - // // Parallel computations (NOTE: Not efficient yet. Compute only the upper or lower triangular in the future.) - // Zip::from(&mut fst) - // .and(&loci) - // .and(&pop1) - // .and(&pop2) - // .par_for_each(|f, &i, &j, &k| { - // let idx_start = loci_idx[i]; - // let idx_end = loci_idx[i + 1]; - // let g = genotypes_and_phenotypes - // .intercept_and_allele_frequencies - // .slice(s![.., idx_start..idx_end]); - // // Make sure that allele frequencies per locus sums up to one - // assert!(g.sum_axis(Axis(1)).sum() as usize == n); - // let nj = genotypes_and_phenotypes.coverages[(j, i)]; - // let nk = genotypes_and_phenotypes.coverages[(k, i)]; - // let q1_j = (g.slice(s![j, ..]).fold(0.0, |sum, &x| sum + x.powf(2.0)) - // * (nj / (nj - 1.00 + f64::EPSILON))) - // + (1.00 - (nj / (nj - 1.00 + f64::EPSILON))); // with a n/(n-1) factor on the heteroygosity to make it unbiased - // let q1_k = (g.slice(s![k, ..]).fold(0.0, |sum, &x| sum + x.powf(2.0)) - // * (nk / (nk - 1.00 + f64::EPSILON))) - // + (1.00 - (nk / (nk - 1.00 + f64::EPSILON))); // with a n/(n-1) factor on the heteroygosity to make it unbiased - // let q2_jk = g - // .slice(s![j, ..]) - // .iter() - // .zip(&g.slice(s![k, ..])) - // .fold(0.0, |sum, (&x, &y)| sum + (x * y)); - // let f_unbiased = (0.5 * (q1_j + q1_k) - q2_jk) / (1.00 - q2_jk + f64::EPSILON); // The reason why we're getting NaN is that q2_jk==1.0 because the 2 populations are both fixed at the locus, i.e. the same allele is at 1.00. - // *f = if f_unbiased < 0.0 { - // // fst[(i, j, k)] = if f_unbiased < 0.0 { - // 0.0 - // } else if f_unbiased > 1.0 { - // 1.0 - // } else { - // f_unbiased - // }; - // }); - // println!("fst={:?}", fst); - + let loci: Array3 = Array3::from_shape_vec( + (l, n, n), + (0..(l)) + .flat_map(|x| std::iter::repeat(x).take(n * n)) + .collect(), + ) + .unwrap(); + let pop1: Array3 = Array3::from_shape_vec( + (l, n, n), + std::iter::repeat( + (0..n) + .flat_map(|x| std::iter::repeat(x).take(n)) + .collect::>(), + ) + .take(l) + .flat_map(|x| x) + .collect::>(), + ) + .unwrap(); + let pop2: Array3 = Array3::from_shape_vec( + (l, n, n), + std::iter::repeat( + std::iter::repeat((0..n).collect::>()) + .take(n) + .flat_map(|x| x) + .collect::>(), + ) + .take(l) + .flat_map(|x| x) + .collect::>(), + ) + .unwrap(); + // Parallel computations (NOTE: Not efficient yet. Compute only the upper or lower triangular in the future.) + Zip::from(&mut fst) + .and(&loci) + .and(&pop1) + .and(&pop2) + .par_for_each(|f, &i, &j, &k| { + let idx_start = loci_idx[i]; + let idx_end = loci_idx[i + 1]; + let g = genotypes_and_phenotypes + .intercept_and_allele_frequencies + .slice(s![.., idx_start..idx_end]); + // Make sure that allele frequencies per locus sums up to one + assert!((g.sum_axis(Axis(1)).sum() - n as f64).abs() <= f64::EPSILON); + let nj = genotypes_and_phenotypes.coverages[(j, i)]; + let nk = genotypes_and_phenotypes.coverages[(k, i)]; + let q1_j = (g.slice(s![j, ..]).fold(0.0, |sum, &x| sum + x.powf(2.0)) + * (nj / (nj - 1.00 + f64::EPSILON))) + + (1.00 - (nj / (nj - 1.00 + f64::EPSILON))); // with a n/(n-1) factor on the heteroygosity to make it unbiased + let q1_k = (g.slice(s![k, ..]).fold(0.0, |sum, &x| sum + x.powf(2.0)) + * (nk / (nk - 1.00 + f64::EPSILON))) + + (1.00 - (nk / (nk - 1.00 + f64::EPSILON))); // with a n/(n-1) factor on the heteroygosity to make it unbiased + let q2_jk = g + .slice(s![j, ..]) + .iter() + .zip(&g.slice(s![k, ..])) + .fold(0.0, |sum, (&x, &y)| sum + (x * y)); + let f_unbiased = (0.5 * (q1_j + q1_k) - q2_jk) / (1.00 - q2_jk + f64::EPSILON); // The reason why we're getting NaN is that q2_jk==1.0 because the 2 populations are both fixed at the locus, i.e. the same allele is at 1.00. + *f = if f_unbiased < 0.0 { + // fst[(i, j, k)] = if f_unbiased < 0.0 { + 0.0 + } else if f_unbiased > 1.0 { + 1.0 + } else { + f_unbiased + }; + }); // Write output (Fst averaged across all loci) let mut fname_output = fname_output.to_owned(); let mut fname_output_per_window = fname_output @@ -219,8 +174,8 @@ pub fn fst( .unwrap(); // println!("fst={:?}", fst); // println!("l={:?}", l); - // println!("windows_idx_head={:?}", windows_idx_head); - // println!("windows_idx_tail={:?}", windows_idx_tail); + println!("windows_idx_head={:?}", windows_idx_head); + println!("windows_idx_tail={:?}", windows_idx_tail); // Take the means per window let n_windows = windows_idx_head.len(); assert!(n_windows > 0, "There were no windows defined. Please check the sync file, the window size, slide size, and the minimum number of loci per window."); diff --git a/src/popgen/watterson_theta.rs b/src/popgen/watterson_theta.rs index 8cfc217..38e4847 100644 --- a/src/popgen/watterson_theta.rs +++ b/src/popgen/watterson_theta.rs @@ -252,7 +252,7 @@ pub fn watterson_estimator( .open(&fname_output) .expect(&error_writing_file); // Header - let mut line: Vec = vec!["Pool".to_owned()]; + let mut line: Vec = vec!["Pool".to_owned(), "Mean_across_windows".to_owned()]; for i in 0..n_windows { let idx_ini = windows_idx_head[i]; let idx_fin = windows_idx_tail[i];