-
Notifications
You must be signed in to change notification settings - Fork 172
/
CME3.py
216 lines (149 loc) · 6.49 KB
/
CME3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
#!/usr/bin/env python
# coding: utf-8
#without the help of my intern, this option data scraper would never exist
#thank you, Olivia, much appreciated for the data etl
# In[1]:
import requests
import pandas as pd
import time
import random as rd
import os
os.chdir('H:/')
# In[2]:
#scraping function
def scrape(url):
session=requests.Session()
session.headers.update(
{'User-Agent':'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/72.0.3626.121 Safari/537.36'})
time.sleep(rd.randint(0,10))
response=session.get(url,params={"_": int(time.time()*1000)})
return response
# In[3]:
#get options expiration id
def get_expiration_data(expiration_json,options_id):
expiration_dict=expiration_json[str(options_id)]['expirations']
return [(expiration_dict[i]['expiration'],expiration_dict[i]['label']) for i in expiration_dict]
# In[4]:
#get group id
def get_groupid(jsondata):
commoditygroup=pd.DataFrame.from_dict(jsondata['filters']['group'])
var=locals()
for i in range(len(commoditygroup)):
var['a'+str(i)]=pd.DataFrame.from_dict(commoditygroup['children'].iloc[i])
var['a'+str(i)]['group']=commoditygroup['name'].iloc[i]
groupid=pd.concat([var['a'+str(i)] for i in range(len(commoditygroup))])
groupid.reset_index(inplace=True,drop=True)
return groupid
#get product id
def get_productid(jsondata):
return pd.DataFrame.from_dict(jsondata['products'])
# In[5]:
#get option quote
def get_data(jsondata):
table=pd.DataFrame.from_dict(jsondata,orient='index').T
#unpack option related data
optionContractQuotes=table['optionContractQuotes'].iloc[0]
var=locals()
for i in range(len(optionContractQuotes)):
var['a'+str(i)]=pd.DataFrame.from_dict(optionContractQuotes[i]).T
var['a'+str(i)]['strikePrice']=var['a'+str(i)]['change'].loc['strikePrice']
var['a'+str(i)]['strikeRank']=var['a'+str(i)]['change'].loc['strikePrice']
var['a'+str(i)]['underlyingFutureContract']=var['a'+str(i)]['change'].loc['underlyingFutureContract']
var['a'+str(i)].drop(['strikePrice','strikeRank','underlyingFutureContract'],
inplace=True)
var['a'+str(i)].reset_index(inplace=True)
var['a'+str(i)].columns=var['a'+str(i)].columns.str.replace('index','optiontype')
options=pd.concat([var['a'+str(i)] for i in range(len(optionContractQuotes))])
options.columns=['options-'+i for i in options.columns]
#unpack underlying future contract
assert len(table)==1,"table length mismatch"
underlyingFutureContractQuotes=pd.DataFrame.from_dict(table['underlyingFutureContractQuotes'].iloc[0])
assert len(underlyingFutureContractQuotes)==1,"underlyingFutureContractQuotes length mismatch"
lastTradeDate_dict=underlyingFutureContractQuotes['lastTradeDate'].iloc[0]
lastTradeDate=pd.DataFrame()
for i in lastTradeDate_dict:
lastTradeDate[i]=[lastTradeDate_dict[i]]
priceChart_dict=underlyingFutureContractQuotes['priceChart'].iloc[0]
priceChart=pd.DataFrame()
for i in priceChart_dict:
priceChart[i]=[priceChart_dict[i]]
del underlyingFutureContractQuotes['lastTradeDate']
del underlyingFutureContractQuotes['priceChart']
priceChart.columns=priceChart.columns.str.replace('code','pricechartcode')
futures=pd.concat([underlyingFutureContractQuotes,lastTradeDate,priceChart],axis=1)
futures.columns=['futures-'+i for i in futures.columns]
#concatenate options and futures
output=options.copy(deep=True)
assert len(futures)==1,"futures length mismatch"
for i in futures:
output[i]=futures[i].iloc[0]
del table['optionContractQuotes']
del table['underlyingFutureContractQuotes']
for i in table:
output[i]=table[i].iloc[0]
return output
# In[6]:
def main():
id_url='https://www.cmegroup.com/CmeWS/mvc/ProductSlate/V2/List'
#get group and product id to find the future contract
response_id=scrape(id_url)
groupid=get_groupid(response_id.json())
productid=get_productid(response_id.json())
#301 denotes corn option
option_id=301
#get expiration code from futures
expiration_url=f'https://www.cmegroup.com/CmeWS/mvc/Options/Categories/List/{option_id}/G?optionTypeFilter='
response_expiration=scrape(expiration_url)
target_exp_id=get_expiration_data(response_expiration.json())
#get option data
for expiration_id,expiration_date in target_exp_id:
option_url=f'https://www.cmegroup.com/CmeWS/mvc/Quotes/Option/{option_id}/G/{expiration_id}/ALL?optionProductId={option_id}&strikeRange=ALL'
response_option=scrape(option_url)
#not every expiration_id leads to concrete data
try:
df=get_data(response_option.json())
target=['options-optiontype',
'options-change',
'options-close',
'options-high',
'options-highLimit',
'options-last',
'options-low',
'options-lowLimit',
'options-mdKey',
'options-open',
'options-percentageChange',
'options-priorSettle',
'options-updated',
'options-volume',
'options-strikePrice',
'options-strikeRank',
'futures-change',
'futures-close',
'futures-expirationDate',
'futures-high',
'futures-highLimit',
'futures-last',
'futures-low',
'futures-lowLimit',
'futures-mdKey',
'futures-open',
'futures-optionUri',
'futures-percentageChange',
'futures-priorSettle',
'futures-productId',
'futures-productName',
'futures-updated',
'futures-volume',
'futures-default24',
'tradeDate']
df=df[target]
#fix the expiration mismatch between futures and options
#or you can use cme rule based month coding system
# https://www.cmegroup.com/month-codes.html
df['futures-expirationDate']=pd.to_datetime(expiration_date)
df.to_csv(f'corn option {expiration_id}.csv',index=False)
except ValueError:
pass
if __name__ == "__main__":
main()