-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path08_minimal_exp.py
239 lines (189 loc) · 9.7 KB
/
08_minimal_exp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
# Training parameter
batch_size = 16
# Libraries and imports
import numpy as np
import pandas as pd
from datetime import datetime
import torch
from torch.autograd import Variable
import torch.nn as nn
from torch.utils import data
from models.ConvTimeLSTM1 import ConvTime_LSTM1
from helper_fns.processing import scale_and_remove_na
# Required input
print("Importing and formatting data")
vol = "ErtaAle"
num_input_scenes = 10
train_percent = 0.70
out_samp_perc = 0.15 # validation and testing
# Basic data import
numpy_data_location = "data/" + vol + "/numpy_data_cube.npy"
table_data_location = "data/" + vol + "/good_df.csv"
volcano_scenes = np.load(numpy_data_location)
tabular_metadata = pd.read_csv(table_data_location)
# Separate model inputs (previous $n$ scenes, time differences) and outputs (subsequent scene)
# Determine number in each partition
train_n = int(np.floor((len(volcano_scenes) - num_input_scenes)*train_percent))
out_n = int(np.floor((len(volcano_scenes) - num_input_scenes)*out_samp_perc))
# For every data partition
# Array for the prior scenes
x_scenes_train = np.zeros([train_n, num_input_scenes, volcano_scenes.shape[1], volcano_scenes.shape[2], volcano_scenes.shape[3]])
x_scenes_valid = np.zeros([out_n, num_input_scenes, volcano_scenes.shape[1], volcano_scenes.shape[2], volcano_scenes.shape[3]])
x_scenes_test = np.zeros([out_n, num_input_scenes, volcano_scenes.shape[1], volcano_scenes.shape[2], volcano_scenes.shape[3]])
# Array for the time differences between scenes
time_differences_train = np.ones(x_scenes_train.shape)
time_differences_valid = np.ones(x_scenes_valid.shape)
time_differences_test = np.ones(x_scenes_test.shape)
# Array for the target scenes
y_scenes_train = np.zeros([train_n, 1, volcano_scenes.shape[1], volcano_scenes.shape[2], volcano_scenes.shape[3]])
y_scenes_valid = np.zeros([out_n, 1, volcano_scenes.shape[1], volcano_scenes.shape[2], volcano_scenes.shape[3]])
y_scenes_test = np.zeros([out_n, 1, volcano_scenes.shape[1], volcano_scenes.shape[2], volcano_scenes.shape[3]])
# Array for the prior max temperature above the background
x_temperatures_train = np.zeros([train_n, num_input_scenes])
x_temperatures_valid = np.zeros([out_n, num_input_scenes])
x_temperatures_test = np.zeros([out_n, num_input_scenes])
# Array for the target max temperature above the background
y_temperatures_train = np.zeros([train_n])
y_temperatures_valid = np.zeros([out_n])
y_temperatures_test = np.zeros([out_n])
# Formatting the string dates as datetime objects
formatted_dates = [datetime.strptime(date, '%Y-%m-%d') for date in tabular_metadata['dates']]
# For all observations - acknowledging that the first (n-1) wont have n prior observations
for i in range(num_input_scenes, x_scenes_train.shape[0] + x_scenes_valid.shape[0] + x_scenes_test.shape[0] + 10):
if i < (train_n + num_input_scenes):
# Store the image data
x_scenes_train[i - num_input_scenes, :, :, :, :] = volcano_scenes[(i - num_input_scenes):i, :, :, :]
y_scenes_train[i - num_input_scenes, 0, :, :, :] = volcano_scenes[i, :, :, :]
# Store the max temperature scalars
x_temperatures_train[i - num_input_scenes, :] = tabular_metadata['T_above_back'].values[(i - num_input_scenes):i]
y_temperatures_train[i - num_input_scenes] = tabular_metadata['T_above_back'].values[i]
# Compute the time differences and store
dates_i_plus_1 = formatted_dates[(i - num_input_scenes + 1):(i + 1)]
dates_i = formatted_dates[(i - num_input_scenes):i]
for j in range(len(dates_i_plus_1)):
time_differences_train[i - num_input_scenes, j] = (dates_i_plus_1[j] - dates_i[j]).days
elif i < (train_n + out_n + num_input_scenes):
# Store the image data
x_scenes_valid[i - train_n - num_input_scenes, :, :, :, :] = volcano_scenes[(i - num_input_scenes):i, :, :, :]
y_scenes_valid[i - train_n - num_input_scenes, 0, :, :, :] = volcano_scenes[i, :, :, :]
# Store the max temperature scalars
x_temperatures_valid[i - train_n - num_input_scenes, :] = tabular_metadata['T_above_back'].values[(i - num_input_scenes):i]
y_temperatures_valid[i - train_n - num_input_scenes] = tabular_metadata['T_above_back'].values[i]
# Compute the time differences and store
dates_i_plus_1 = formatted_dates[(i - num_input_scenes + 1):(i + 1)]
dates_i = formatted_dates[(i - num_input_scenes):i]
for j in range(len(dates_i_plus_1)):
time_differences_valid[i - train_n - num_input_scenes, j] = (dates_i_plus_1[j] - dates_i[j]).days
else:
# Store the image data
x_scenes_test[i - train_n - out_n - num_input_scenes, :, :, :, :] = volcano_scenes[(i - num_input_scenes):i, :, :, :]
y_scenes_test[i - train_n - out_n - num_input_scenes, 0, :, :, :] = volcano_scenes[i, :, :, :]
# Store the max temperature scalars
x_temperatures_test[i - train_n - out_n - num_input_scenes, :] = tabular_metadata['T_above_back'].values[(i - num_input_scenes):i]
y_temperatures_test[i - train_n - out_n - num_input_scenes] = tabular_metadata['T_above_back'].values[i]
# Compute the time differences and store
dates_i_plus_1 = formatted_dates[(i - num_input_scenes + 1):(i + 1)]
dates_i = formatted_dates[(i - num_input_scenes):i]
for j in range(len(dates_i_plus_1)):
time_differences_test[i - train_n - out_n - num_input_scenes, j] = (dates_i_plus_1[j] - dates_i[j]).days
# Scale temperatures between 0 and 1. If temperature is missing, assigned a scaled value of 0
print("Processing data")
x_scenes_train = scale_and_remove_na(x_scenes_train)
x_scenes_train = scale_and_remove_na(x_scenes_train)
x_scenes_train = scale_and_remove_na(x_scenes_train)
time_differences_train = scale_and_remove_na(time_differences_train)
time_differences_train = scale_and_remove_na(time_differences_train)
time_differences_train = scale_and_remove_na(time_differences_train)
y_scenes_train = scale_and_remove_na(y_scenes_train)
y_scenes_train = scale_and_remove_na(y_scenes_train)
y_scenes_train = scale_and_remove_na(y_scenes_train)
# Passing to pytorch and formatting
x_scenes_train = torch.from_numpy(x_scenes_train).type(torch.FloatTensor)
x_scenes_test = torch.from_numpy(x_scenes_test).type(torch.FloatTensor)
x_scenes_valid = torch.from_numpy(x_scenes_valid).type(torch.FloatTensor)
time_differences_train = torch.from_numpy(time_differences_train).type(torch.FloatTensor)
time_differences_test = torch.from_numpy(time_differences_test).type(torch.FloatTensor)
time_differences_valid = torch.from_numpy(time_differences_valid).type(torch.FloatTensor)
y_scenes_train = torch.from_numpy(y_scenes_train).type(torch.FloatTensor)
y_scenes_test = torch.from_numpy(y_scenes_test).type(torch.FloatTensor)
y_scenes_valid = torch.from_numpy(y_scenes_valid).type(torch.FloatTensor)
# Defining model parameters
# Picking one of the like-sequence tensors within the list to set parameters
print("Beginning training")
channels = x_scenes_train.shape[2]
height = x_scenes_train.shape[3]
width = x_scenes_train.shape[4]
conv_time_lstm = ConvTime_LSTM1(input_size = (height, width), input_dim = channels, hidden_dim = [128, 64, 64, 1], kernel_size = (5, 5), num_layers = 4, batch_first = True, bias = True, return_all_layers = False, GPU = True)
# Setting optimization methods
loss = torch.nn.MSELoss()
optimizer = torch.optim.Adam(conv_time_lstm.parameters())
# Defining data set and data loaders for parallelization
class train_Dataset(data.Dataset):
'Characterizes a dataset for PyTorch'
def __init__(self, data_indices):
'Initialization'
self.data_indices = data_indices
def __len__(self):
'Denotes the total number of samples'
return len(self.data_indices)
def __getitem__(self, index):
'Generates one sample of data'
# Select sample
IDs = self.data_indices[index]
# Load data and get label
curr_x = x_scenes_train[IDs, :, :, :, :]
curr_t = time_differences_train[IDs, :, :, :, :]
curr_y = y_scenes_train[IDs, :, :, :, :]
#return X, y
return(curr_x, curr_t, curr_y)
class validation_Dataset(data.Dataset):
'Characterizes a dataset for PyTorch'
def __init__(self, data_indices):
'Initialization'
self.data_indices = data_indices
def __len__(self):
'Denotes the total number of samples'
return len(self.data_indices)
def __getitem__(self, index):
'Generates one sample of data'
# Select sample
IDs = self.data_indices[index]
# Load data and get label
curr_x = x_scenes_valid[IDs, :, :, :, :]
curr_t = time_differences_valid[IDs, :, :, :, :]
curr_y = y_scenes_valid[IDs, :, :, :, :]
#return X, y
return(curr_x, curr_t, curr_y)
training_set = train_Dataset(data_indices=range(y_scenes_train.shape[0]))
validation_set = validation_Dataset(data_indices=range(y_scenes_valid.shape[0]))
train_loader = torch.utils.data.DataLoader(dataset = training_set, batch_size = batch_size, shuffle = True)
validation_loader = torch.utils.data.DataLoader(dataset = validation_set, batch_size = batch_size, shuffle = True)
# ## Retrieving available computing devices and using parallel GPUs if available
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
conv_time_lstm = conv_time_lstm.cuda()
# Training loop
print("Beginning training")
loss_list = []
epochs = int(np.ceil((7*10**5) / x_scenes_train.shape[0]))
for i in range(epochs):
for data in train_loader:
# data loader
batch_x, batch_t, batch_y = data
# move to GPU
batch_x = batch_x.to(device)
batch_t = batch_t.to(device)
batch_y = batch_y.to(device)
# run model and get the prediction
batch_y_hat = conv_time_lstm(batch_x,
batch_t)
batch_y_hat = batch_y_hat[0][0][:, -2:-1, :, :, :]
# calculate and store the loss
batch_loss = loss(batch_y, batch_y_hat)
loss_list.append(batch_loss.item())
# update parameters
optimizer.zero_grad()
batch_loss.backward()
optimizer.step()
print('Epoch: ', i, '\n\tBatch loss: ', batch_loss.item(), '\n')
print('Epoch: ', i, '\n\tBatch loss: ', batch_loss.item(), '\n')
# In[ ]: