-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathtrainer.py
executable file
·165 lines (127 loc) · 6.3 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import torch
from tqdm import tqdm, trange
import os
import numpy as np
from dataloader import SceneDataset
import generator
import math
from glob import glob
from torch.utils.tensorboard import SummaryWriter
import torchvision
img2mse = lambda x, y: torch.mean((x - y) ** 2)
mse2psnr = lambda x: -10. * torch.log(x) / torch.log(torch.Tensor([10.]).to(i4d.device))
def train(cfg):
# Create log dir and copy the config file
basedir = cfg.basedir
expname = cfg.expname
os.makedirs(os.path.join(basedir, expname), exist_ok=True)
f = os.path.join(basedir, expname, 'args.txt')
with open(f, 'w') as file:
for arg in sorted(vars(cfg)):
attr = getattr(cfg, arg)
file.write('{} = {}\n'.format(arg, attr))
if cfg.config is not None:
f = os.path.join(basedir, expname, 'config.txt')
with open(f, 'w') as file:
file.write(open(cfg.config, 'r').read())
writer = SummaryWriter(os.path.join(basedir, expname, "tensorboard"))
test_dataset = SceneDataset(cfg, 'test')
train_dataset = SceneDataset(cfg, 'train')
train_dataset_loader = train_dataset.get_loader()
val_dataset_loader = SceneDataset(cfg, 'val').get_loader()
train_dataset_iterator = train_dataset_loader.__iter__()
val_dataset_iterator = val_dataset_loader.__iter__()
global i4d
i4d = model.Implicit4D(cfg, train_dataset.proj_pts_to_ref_torch)
i4d.load_model()
N_iters = 200000 + 1
for global_step in trange(i4d.start, N_iters):
batches_per_epoch = math.ceil(len(train_dataset) / cfg.batch_size)
epoch = global_step // batches_per_epoch
loss, psnr, train_dataset_iterator = compute_loss(train_dataset_iterator, train_dataset_loader, global_step, cfg)
loss.backward()
i4d.optimizer.step()
if not cfg.lrate_decay_off:
### update learning rate ###
decay_rate = 0.1
decay_steps = cfg.lrate_decay * 1000
new_lrate = cfg.lrate * (decay_rate ** (global_step / decay_steps))
for param_group in i4d.optimizer.param_groups:
param_group['lr'] = new_lrate
################################
##### end #####
# Rest is logging
if global_step % cfg.i_weights == 0:
i4d.save_model(global_step)
if global_step % cfg.i_testset == 0:
plot = generator.training_visualization(1, cfg, i4d, test_dataset, global_step)
writer.add_figure('Visualization', plot, global_step)
if global_step % cfg.i_print == 0:
writer.add_scalar('Train PSNR', psnr.item(), global_step)
writer.add_scalar('Train Loss(MSE)', loss.item(), global_step)
tqdm.write(f"[TRAIN] Iter: {global_step} Loss: {loss.item()} PSNR: {psnr.item()}")
#fine tune validation steps
fine_tune_val = False
if cfg.fine_tune:
fine_tune_val = global_step % cfg.i_val_fine_tune == 0
# for every 10th epoch: if new epoch begins, compute validation loss
prev_epoch = ((global_step - 1) // batches_per_epoch)
if (epoch != prev_epoch and epoch % cfg.i_validation_loss == 0 and not cfg.i_no_val) or fine_tune_val :
# clear cuda variables to enable releasing memory
del loss, psnr
val_batches = 20
val_loss_sum = 0; val_psnr_sum = 0
for i in range(val_batches):
# torch.cuda.empty_cache()
val_loss_batch, val_psnr_batch, val_dataset_iterator = compute_loss(val_dataset_iterator, val_dataset_loader, global_step, cfg)
val_loss_sum += val_loss_batch.item(); val_psnr_sum += val_psnr_batch.item()
tqdm.write(f"[VAL STEP] Iter: {global_step} Loss: {val_loss_batch.item()} PSNR: {val_psnr_batch.item()}")
writer.add_scalar('Validation Loss(MSE)/Per Batch', val_loss_batch.item(), global_step + i)
writer.add_scalar('Validation PSNR/Per Batch', val_psnr_batch.item(), global_step + i)
# clear cuda variables to enable releasing memory
del val_loss_batch, val_psnr_batch
val_loss = val_loss_sum / val_batches; val_psnr = val_psnr_sum/ val_batches
tqdm.write(f"[VAL] Iter: {global_step} Loss: {val_loss} PSNR: {val_psnr}")
writer.add_scalar('Validation Loss(MSE)/AVG', val_loss, global_step)
writer.add_scalar('Validation PSNR/AVG', val_psnr, global_step)
if i4d.val_min is None:
i4d.val_min = val_loss
if val_loss < i4d.val_min:
i4d.val_min = val_loss
val_file_path = os.path.join(basedir, expname)
for path in glob(val_file_path + '/val_min=*'):
os.remove(path)
np.save( val_file_path + f'/val_min={global_step}', [epoch, val_loss, global_step])
def compute_loss(dataset_iterator, dataloader, global_step, cfg):
try:
data = dataset_iterator.next()
except:
# iterator not initialized or last element reached, python has no .hasNext
dataset_iterator = dataloader.__iter__()
data = dataset_iterator.next()
if global_step < cfg.precrop_iters:
# [rays_o, rays_d, viewdirs, target_s, pts, z_vals]
# [batch_size, N_rand, 3] , ... , [batch_size, N_rand, 3] , [batch_size, N_rand, N_samples, 3], [batch_size, N_rand, N_samples]
data = data['cropped']
else:
data = data['complete']
# reshape batch_size dimension into data
data_reshaped = [tensor.reshape([-1] + list(tensor.shape[2:])) for tensor in data[:-1]]
rays_o, rays_d, viewdirs, target_s, pts, z_vals, ref_pts, ref_images, rel_ref_cam_locs, ref_poses = data_reshaped
focal = np.array(data[-1])
i4d.model.train()
i4d.optimizer.zero_grad()
ret = i4d.render_data(ref_images, ref_pts, rays_o, rays_d, viewdirs, z_vals, ref_poses, focal)
target_s = target_s.to(i4d.device)
img_loss = img2mse(ret['rgb'], target_s)
loss = img_loss
psnr = mse2psnr(img_loss)
if 'rgb0' in ret and not cfg.fine_model_duplicate:
img_loss0 = img2mse(ret['rgb0'], target_s)
loss = loss + img_loss0
return loss, psnr, dataset_iterator
if __name__ == '__main__':
import config_loader
import model
cfg = config_loader.get_config()
train(cfg)