-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhelper8.py
246 lines (211 loc) · 8.05 KB
/
helper8.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
"""
helper6 with HSV
"""
import re
import random
import numpy as np
import os.path
import scipy.misc
import shutil
import zipfile
import time
import tensorflow as tf
from glob import glob
from urllib.request import urlretrieve
from tqdm import tqdm
import cv2
# 0: nothing, 1: road + roadlines, 2: vehicles
SEG_MAP = {
6: 1, 7: 1,
10: 2
}
# Area of Interest percentage (from the top)
AOI_PERC = 0.83
class DLProgress(tqdm):
last_block = 0
def hook(self, block_num=1, block_size=1, total_size=None):
self.total = total_size
self.update((block_num - self.last_block) * block_size)
self.last_block = block_num
def maybe_download_pretrained_vgg(data_dir):
"""
Download and extract pretrained vgg model if it doesn't exist
:param data_dir: Directory to download the model to
"""
vgg_filename = 'vgg.zip'
vgg_path = os.path.join(data_dir, 'vgg')
vgg_files = [
os.path.join(vgg_path, 'variables/variables.data-00000-of-00001'),
os.path.join(vgg_path, 'variables/variables.index'),
os.path.join(vgg_path, 'saved_model.pb')]
missing_vgg_files = [vgg_file for vgg_file in vgg_files if not os.path.exists(vgg_file)]
if missing_vgg_files:
# Clean vgg dir
if os.path.exists(vgg_path):
shutil.rmtree(vgg_path)
os.makedirs(vgg_path)
# Download vgg
print('Downloading pre-trained vgg model...')
with DLProgress(unit='B', unit_scale=True, miniters=1) as pbar:
urlretrieve(
'https://s3-us-west-1.amazonaws.com/udacity-selfdrivingcar/vgg.zip',
os.path.join(vgg_path, vgg_filename),
pbar.hook)
# Extract vgg
print('Extracting model...')
zip_ref = zipfile.ZipFile(os.path.join(vgg_path, vgg_filename), 'r')
zip_ref.extractall(data_dir)
zip_ref.close()
# Remove zip file to save space
os.remove(os.path.join(vgg_path, vgg_filename))
def remove_hood(seg_img, perc_retain=0.9, car_id=10):
"""
Remove the hood part of the car from the
segmentation image
:param seg_img: The segmentation image
"""
height = seg_img.shape[0]
seg_img[int(height*perc_retain):, :][
np.where(seg_img[int(height*perc_retain):, :] == car_id)] = 0
return seg_img
def remap_seg(seg, seg_map):
"""
Re-map segmentation image
:param seg: Segmentation image, 2-dimensional [width:height]
:param seg_map: dict object, mapping of old_id to new_id,
unmapped ids are converted to 0.
"""
keys = list(seg_map.keys())
# Convert unmapped cells
seg[~np.isin(seg, keys)] = 0
# Convert cells with relevant keys
for key in keys:
seg[seg == key] = seg_map[key]
return seg
def seg2labels(seg, num_classes=3):
"""
Convert segmentation image into multi channels,
that may be used as labels to use in the neural network.
:return: Multi-channel image
"""
labels = np.zeros((seg.shape[0], seg.shape[1], num_classes))
for c in range(num_classes):
layer = np.zeros(seg.shape)
layer[seg == c] = True
labels[:,:, c] = layer
return labels
def labels2seg(labels):
"""
Convert labels into segmentation image.
Useful to save labels that the system had difficulty with.
Todo: Generalize with SEG_MAP
"""
seg = np.zeros((labels.shape[0], labels.shape[1]))
for c in range(labels.shape[2]):
x = labels[:,:,c]
x[x==1] = 6
x[x==2] = 10
seg += x
return seg
def random_gamma():
# min_brightness = 0.2
# max_brightness = 9
min_brightness = 0.4
max_brightness = 3.0
factor = random.uniform(-1, 1)
if factor > 0:
# brighten
gamma = 1 + ((max_brightness - 1) * factor)
else:
# darken
gamma = min_brightness + ((1 - min_brightness) * -factor)
return gamma
def adj_brightness(input_image, gamma):
if gamma == 0:
gamma = 0.01
invGamma = 1.0 / gamma
table = np.array([((i / 255.0) ** invGamma) * 255 for i in np.arange(0, 256)]).astype(np.uint8)
return cv2.LUT(input_image, table)
def data_augmentation(input_image, output_image, args):
gamma = 1
angle = 0
flip = 0
if args.h_flip and random.randint(0,1):
input_image = cv2.flip(input_image, 1)
output_image = cv2.flip(output_image, 1)
flip = 1
if args.brightness and random.randint(0,1):
gamma = random_gamma()
input_image = adj_brightness(input_image, gamma)
if args.rotation:
angle = random.uniform(-1*args.rotation, args.rotation)
if args.rotation:
M = cv2.getRotationMatrix2D((input_image.shape[1]//2, input_image.shape[0]//2), angle, 1.0)
input_image = cv2.warpAffine(input_image, M, (input_image.shape[1], input_image.shape[0]), flags=cv2.INTER_NEAREST)
output_image = cv2.warpAffine(output_image, M, (output_image.shape[1], output_image.shape[0]), flags=cv2.INTER_NEAREST)
return input_image, output_image, (flip, gamma, angle)
def gen_batch_function(data_folders, rgb_dir, seg_dir, args):
"""
Generate function to create batches of training data
"""
image_shape = (args.img_height, args.img_width)
def get_batches_fn(batch_size):
"""
Create batches of training data
:param batch_size: Batch Size
:return: Batches of training data
"""
rgb_paths = []
seg_paths = []
for data_folder in data_folders:
rgb_paths += glob(os.path.join(data_folder, rgb_dir, '*.png'))
seg_paths += glob(os.path.join(data_folder, seg_dir, '*.png'))
random_ids = np.random.permutation(len(rgb_paths))
for batch_i in range(0, len(rgb_paths), batch_size):
images = []
labels = []
for i, rgb_file in enumerate(np.take(rgb_paths, random_ids[batch_i:batch_i+batch_size])):
seg_file = np.take(seg_paths, random_ids[batch_i+i])
img = cv2.cvtColor(cv2.imread(rgb_file), cv2.COLOR_BGR2HSV)
seg = remove_hood(cv2.imread(seg_file, cv2.IMREAD_COLOR)[:, :, 2],
perc_retain=AOI_PERC)
img = cv2.resize(img,
(image_shape[1], image_shape[0]))
seg = cv2.resize(seg,
(image_shape[1], image_shape[0]),
interpolation=cv2.INTER_NEAREST)
seg = remap_seg(seg, SEG_MAP)
img, seg, aug_params = data_augmentation(img, seg, args)
images.append(img)
labels.append(seg2labels(seg))
yield np.array(images), np.array(labels), aug_params
return get_batches_fn
def reshape_to_ori(mask, ori_img_shape):
scale_height = int(ori_img_shape[0])
scale_width = int(ori_img_shape[1])
# print("mask shape before:", mask.shape)
mask = np.array(mask, dtype=np.uint8)
# print("mask shape mid:", mask.shape)
mask = cv2.resize(mask, (scale_width, scale_height), interpolation=cv2.INTER_NEAREST)
# print("mask shape after:", mask.shape)
return mask
def save_model(sess, input_image, logits, save_dir):
builder = tf.saved_model.builder.SavedModelBuilder(save_dir)
tensor_info_input_image = tf.saved_model.utils.build_tensor_info(input_image)
tensor_info_logits = tf.saved_model.utils.build_tensor_info(logits)
print("tensor_info_input_image:", tensor_info_input_image)
print("tensor_info_logits:", tensor_info_logits)
prediction_signature = (
tf.saved_model.signature_def_utils.build_signature_def(
inputs={'net_input': tensor_info_input_image},
outputs={'logits': tensor_info_logits},
method_name=tf.saved_model.signature_constants.PREDICT_METHOD_NAME))
builder.add_meta_graph_and_variables(
sess, [tf.saved_model.tag_constants.SERVING],
signature_def_map={
tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY:
prediction_signature
},
)
builder.save()
return save_dir