-
Notifications
You must be signed in to change notification settings - Fork 18
/
dqn_agent.py
366 lines (306 loc) · 11.8 KB
/
dqn_agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
# -*- coding: utf-8 -*-
import math
import random
import sys
import os
import shutil
import numpy as np
#import matplotlib
#import matplotlib.pyplot as plt
from collections import namedtuple
from itertools import count
from copy import deepcopy
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.autograd import Variable
from engine import TetrisEngine
width, height = 10, 20 # standard tetris friends rules
engine = TetrisEngine(width, height)
# set up matplotlib
#is_ipython = 'inline' in matplotlib.get_backend()
#if is_ipython:
#from IPython import display
#plt.ion()
# if gpu is to be used
use_cuda = torch.cuda.is_available()
if use_cuda:print("....Using Gpu...")
FloatTensor = torch.cuda.FloatTensor if use_cuda else torch.FloatTensor
LongTensor = torch.cuda.LongTensor if use_cuda else torch.LongTensor
ByteTensor = torch.cuda.ByteTensor if use_cuda else torch.ByteTensor
#Tensor = FloatTensor
######################################################################
# Replay Memory
# -------------
# - ``Transition`` - a named tuple representing a single transition in
# our environment
# - ``ReplayMemory`` - a cyclic buffer of bounded size that holds the
# transitions observed recently. It also implements a ``.sample()``
# method for selecting a random batch of transitions for training.
#
Transition = namedtuple('Transition',
('state', 'action', 'next_state', 'reward'))
class ReplayMemory(object):
def __init__(self, capacity):
self.capacity = capacity
self.memory = []
self.position = 0
def push(self, *args):
"""Saves a transition."""
if len(self.memory) < self.capacity:
self.memory.append(None)
self.memory[self.position] = Transition(*args)
self.position = (self.position + 1) % self.capacity
def sample(self, batch_size):
return random.sample(self.memory, batch_size)
def __len__(self):
return len(self.memory)
'''
class DQN(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(1, 16, kernel_size=3, stride=1)
self.bn1 = nn.BatchNorm2d(16)
self.conv2 = nn.Conv2d(16, 32, kernel_size=4, stride=2)
self.bn2 = nn.BatchNorm2d(32)
#self.conv3 = nn.Conv2d(32, 32, kernel_size=2, stride=2)
#self.bn3 = nn.BatchNorm2d(32)
#self.rnn = nn.LSTM(448, 240)
self.lin1 = nn.Linear(768, 256)
self.head = nn.Linear(256, engine.nb_actions)
def forward(self, x):
x = F.relu(self.bn1(self.conv1(x)))
x = F.relu(self.bn2(self.conv2(x)))
#x = F.relu(self.bn3(self.conv3(x)))
x = F.relu(self.lin1(x.view(x.size(0), -1)))
return self.head(x.view(x.size(0), -1))
'''
class BasicFF(nn.Module):
def __init__(self, fan_in=200, fan_out=7):
super().__init__()
self.bn1 = nn.BatchNorm1d(fan_in)
self.ff1 = nn.Linear(fan_in, 600)
self.bn2 = nn.BatchNorm1d(600)
self.ff2 = nn.Linear(600, 800)
self.bn3 = nn.BatchNorm1d(800)
self.ff3 = nn.Linear(800, fan_out)
def forward(self, x):
if len(x.shape) == 4:
x = x.view(x.shape[0], -1)
h = self.ff1(self.bn1(x))
h = self.ff2(self.bn2(h))
return self.ff3(self.bn3(h))
######################################################################
# Training
# --------
#
# Hyperparameters and utilities
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
# This cell instantiates our model and its optimizer, and defines some
# utilities:
#
# - ``Variable`` - this is a simple wrapper around
# ``torch.autograd.Variable`` that will automatically send the data to
# the GPU every time we construct a Variable.
# - ``select_action`` - will select an action accordingly to an epsilon
# greedy policy. Simply put, we'll sometimes use our model for choosing
# the action, and sometimes we'll just sample one uniformly. The
# probability of choosing a random action will start at ``EPS_START``
# and will decay exponentially towards ``EPS_END``. ``EPS_DECAY``
# controls the rate of the decay.
#
BATCH_SIZE = 64
GAMMA = 0.999
EPS_START = 0.9
EPS_END = 0.05
EPS_DECAY = 200
CHECKPOINT_FILE = 'checkpoint.pth.tar'
steps_done = 0
@torch.no_grad()
def select_action(state, steps_done):
model.eval()
sample = random.random()
eps_threshold = EPS_END + (EPS_START - EPS_END) * \
math.exp(-1. * steps_done / EPS_DECAY)
steps_done += 1
if sample > eps_threshold:
with torch.no_grad():
actions = model(Variable(state).type(FloatTensor))
final_action = actions.data.max(1)[1].view(1, 1)
# print the prob distribution sometimes
#if random.random() < 0.001:
#print(actions)
model.train()
return final_action
else:
model.train()
return FloatTensor([[random.randrange(engine.nb_actions)]])
episode_durations = []
'''
def plot_durations():
plt.figure(2)
plt.clf()
durations_t = torch.FloatTensor(episode_durations)
plt.title('Training...')
plt.xlabel('Episode')
plt.ylabel('Duration')
plt.plot(durations_t.numpy())
# Take 100 episode averages and plot them too
if len(durations_t) >= 100:
means = durations_t.unfold(0, 100, 1).mean(1).view(-1)
means = torch.cat((torch.zeros(99), means))
plt.plot(means.numpy())
plt.pause(0.001) # pause a bit so that plots are updated
if is_ipython:
display.clear_output(wait=True)
display.display(plt.gcf())
'''
######################################################################
# Training loop
# ^^^^^^^^^^^^^
#
# Finally, the code for training our model.
#
# Here, you can find an ``optimize_model`` function that performs a
# single step of the optimization. It first samples a batch, concatenates
# all the tensors into a single one, computes :math:`Q(s_t, a_t)` and
# :math:`V(s_{t+1}) = \max_a Q(s_{t+1}, a)`, and combines them into our
# loss. By defition we set :math:`V(s) = 0` if :math:`s` is a terminal
# state.
last_sync = 0
def optimize_model():
global last_sync
if len(memory) < BATCH_SIZE:
return
transitions = memory.sample(BATCH_SIZE)
# Transpose the batch (see http://stackoverflow.com/a/19343/3343043 for
# detailed explanation).
batch = Transition(*zip(*transitions))
# Compute a mask of non-final states and concatenate the batch elements
non_final_mask = ByteTensor(tuple(map(lambda s: s is not None,
batch.next_state)))
# We don't want to backprop through the expected action values and volatile
# will save us on temporarily changing the model parameters'
# requires_grad to False!
with torch.no_grad():
non_final_next_states = Variable(torch.cat([s for s in batch.next_state
if s is not None]))
state_batch = Variable(torch.cat(batch.state))
action_batch = Variable(torch.cat(batch.action))
reward_batch = Variable(torch.cat(batch.reward))
# Compute Q(s_t, a) - the model computes Q(s_t), then we select the
# columns of actions taken
state_action_values = model(state_batch).gather(1, action_batch)
# Compute V(s_{t+1}) for all next states.
with torch.no_grad():
next_state_values = Variable(torch.zeros(BATCH_SIZE).type(FloatTensor))
next_state_values[non_final_mask] = model(non_final_next_states).max(1)[0]
# Now, we don't want to mess up the loss with a volatile flag, so let's
# clear it. After this, we'll just end up with a Variable that has
# requires_grad=False
# Compute the expected Q values
expected_state_action_values = (next_state_values * GAMMA) + reward_batch
# Compute Huber loss
loss = F.smooth_l1_loss(state_action_values, expected_state_action_values)
# Optimize the model
optimizer.zero_grad()
loss.backward()
for param in model.parameters():
param.grad.data.clamp_(-1, 1)
optimizer.step()
return loss.item()
def optimize_supervised(pred, targ):
optimizer.zero_grad()
diff = loss(pred, targ)
diff.backward()
optimizer.step()
def save_checkpoint(state, is_best, filename='checkpoint.pth.tar'):
torch.save(state, filename)
if is_best:
shutil.copyfile(filename, 'model_best.pth.tar')
def load_checkpoint(filename):
checkpoint = torch.load(filename)
model.load_state_dict(checkpoint['state_dict'])
try: # If these fail, its loading a supervised model
optimizer.load_state_dict(checkpoint['optimizer'])
memory = checkpoint['memory']
except Exception as e:
pass
# Low chance of random action
#steps_done = 10 * EPS_DECAY
return checkpoint['epoch'], checkpoint['best_score']
if __name__ == '__main__':
model = BasicFF()
print(model)
if use_cuda:
model.cuda()
loss = nn.MSELoss()
optimizer = optim.RMSprop(model.parameters(), lr=.001)
memory = ReplayMemory(3000)
# Check if user specified to resume from a checkpoint
start_epoch = 0
best_score = 0
if len(sys.argv) > 1 and sys.argv[1] == 'resume':
if len(sys.argv) > 2:
CHECKPOINT_FILE = sys.argv[2]
if os.path.isfile(CHECKPOINT_FILE):
print("=> loading checkpoint '{}'".format(CHECKPOINT_FILE))
start_epoch, best_score = load_checkpoint(CHECKPOINT_FILE)
print("=> loaded checkpoint '{}' (epoch {})"
.format(CHECKPOINT_FILE, start_epoch))
else:
print("=> no checkpoint found at '{}'".format(CHECKPOINT_FILE))
######################################################################
#
# Below, you can find the main training loop. At the beginning we reset
# the environment and initialize the ``state`` variable. Then, we sample
# an action, execute it, observe the next screen and the reward (always
# 1), and optimize our model once. When the episode ends (our model
# fails), we restart the loop.
steps_done = 0
f = open('log.out', 'w+')
for i_episode in count(start_epoch):
# Initialize the environment and state
state = FloatTensor(engine.clear()[None,None,:,:])
score = 0
for t in count():
# Select and perform an action
action = select_action(state, steps_done).type(LongTensor)
# Observations
last_state = state
state, reward, done = engine.step(action.item())
state = FloatTensor(state[None,None,:,:])
# Accumulate reward
score += int(reward)
reward = FloatTensor([float(reward)])
# Store the transition in memory
if reward > 0:
memory.push(last_state, action, state, reward)
# Perform one step of the optimization (on the target network)
if done:
# Train model
if i_episode % 100 == 0:
log = 'epoch {0} score {1}'.format(i_episode, score)
#print(log)
f.write(log + '\n')
loss = optimize_model()
if loss:
print(f'[{i_episode}] loss: {loss:.2f}')
# Checkpoint
if i_episode % 100 == 0:
is_best = True if score > best_score else False
save_checkpoint({
'epoch' : i_episode,
'state_dict' : model.state_dict(),
'best_score' : best_score,
'optimizer' : optimizer.state_dict(),
'memory' : memory
}, is_best)
break
f.close()
print('Complete')
#env.render(close=True)
#env.close()
#plt.ioff()
#plt.show()