-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchoose ML alg.txt
27 lines (21 loc) · 1.13 KB
/
choose ML alg.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
see how dep feature w.r.t dep linear or nonlinear if mixed alot then use knn
see data visualiation
usecase:supervisied
(regression or classification)
for classification use cm,accuracy score,tpr,precision,f1 score to cal
forr reg check acc by Rsqu & adjusted Rsqu
classification:1.log reg (less time to create)
2.DT (have multiple if else loop)
3.RF
4.xgboosting
5.knn(use when all points mixed completively)
6.svm
visualisation of data(seaborn(pairplot),matplot) to select ML model
on graph check each alg can do or not linear seprarable or not
for linear seperable then use log reg(stralight line), separable (NO OVER LAP then use)
for non linear(have data overlapping can do separable)DT,RF,knn,NN
if mixture alot alot alot then use knn first
DT,RF,xgboost,knn req much time TO TRAIN
when have very very overlap then use KNN(find similarity by using nuclear distance)
DT,RF,xgboost(use DT),knn(use eli distance)
linear,log assume follow gaussian distrbution if not transform dep feature to gaussian distrbution get good score