-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathstat.h
274 lines (227 loc) · 5.65 KB
/
stat.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
#include <vector>
#include <string>
#include <cmath>
#include "TVectorD.h"
using namespace std;
struct Stat
{
unsigned int dim;
double S1;
vector<double> Sv, Svv, Svvv, Svvvv;
vector< vector<double> > Sxy, Sxxy, Sxyy, Sxxyy;
vector<string> labels;
void Init(unsigned int _dim = 1)
{
dim = _dim;
S1 = 0.;
for (unsigned int i = 0; i < dim; i++)
{
Sv.push_back(0);
Svv.push_back(0);
Svvv.push_back(0);
Svvvv.push_back(0);
vector<double> temp;
for (unsigned int j = 0; j < dim; j++)
{
temp.push_back(0);
}
Sxy.push_back(temp);
Sxxy.push_back(temp);
Sxyy.push_back(temp);
Sxxyy.push_back(temp);
}
}
Stat() {}
Stat(unsigned int _dim)
{
Init(_dim);
}
void SetLabels(const vector<string> &_l)
{
labels.resize(dim);
for (unsigned int i = 0; i < dim; i++)
labels[i] = _l[i];
}
template <class T>
void Fill(const T &v)
{
S1 += 1.;
for (unsigned int i = 0; i < dim; i++)
{
Sv[i] += v[i];
Svv[i] += v[i]*v[i];
Svvv[i] += v[i]*v[i]*v[i];
Svvvv[i] += v[i]*v[i]*v[i]*v[i];
for (unsigned int j = 0; j < dim; j++)
{
Sxy[i][j] += v[i] * v[j];
Sxxy[i][j] += v[i]*v[i] * v[j];
Sxyy[i][j] += v[i] * v[j]*v[j];
Sxxyy[i][j] += v[i]*v[i] * v[j]*v[j];
}
}
}
void Fill(double v1, double v2 = 0., double v3 = 0., double v4 = 0., double v5 = 0.)
{
vector<double> v(5);
v[0] = v1;
v[1] = v2;
v[2] = v3;
v[3] = v4;
v[4] = v5;
Fill(v);
}
string QLabel(unsigned int i) const
{
if (labels.empty())
{
char buf[10];
sprintf(buf, "qu.%3i", i);
return buf;
} else
return labels[i];
}
//--------------------
// 1D getters
//--------------------
double GetEntries() const
{
return S1;
}
double GetMean(unsigned int i) const
{
double mu = (S1 > 0.) ? Sv[i] / S1 : 0.;
return mu;
}
double GetStdDev(unsigned int i) const
{
double v = (Svv[i] - Sv[i]*Sv[i] / S1) / (S1 - 1.);
double s = (v > 0.) ? sqrt(v) : 0.;
return s;
}
double GetMeanUnc(unsigned int i) const
{
double mu_unc = (S1 > 0.) ? GetStdDev(i) / sqrt(S1) : 0.;
return mu_unc;
}
double GetStdDevUnc(unsigned int i) const
{
double mu = GetMean(i);
double s = GetStdDev(i);
double v = s*s;
double sum = Svvvv[i] - 4.*mu*Svvv[i] + 6.*mu*mu*Svv[i] - 4.*mu*mu*mu*Sv[i] + mu*mu*mu*mu*S1;
double E4 = (S1 > 1.) ? sum / (S1 - 1.) : 0.;
double v_var = (S1 > 3.) ? (E4 - (S1 - 3.)/(S1 - 1.)*v*v) / S1 : 0.;
double s_var = v_var / 4. / v;
double s_s = (s_var > 0.) ? sqrt(s_var) : 0.;
return s_s;
}
// approximation of GetStdDevUnc valid for Gaussian distributions
double GetStdDevUncGauss(unsigned int i) const
{
double s = GetStdDev(i);
double s_s = (S1 > 0.) ? s / sqrt(2. * S1) : 0.;
return s_s;
}
//--------------------
// 2D getters
//--------------------
double GetCovariance(unsigned int i, unsigned int j) const
{
double C = (S1 > 1.) ? (Sxy[i][j] - Sv[i]*Sv[j] / S1) / (S1 - 1.) : 0.;
return C;
}
double GetCorrelation(unsigned int i, unsigned int j) const
{
double C = GetCovariance(i, j);
double den = GetStdDev(i) * GetStdDev(j);
double rho = (den > 0.) ? C / den : 0.;
return rho;
}
double GetCovarianceUnc(unsigned int i, unsigned int j) const
{
double mx = GetMean(i);
double my = GetMean(j);
double sx = GetStdDev(i);
double sy = GetStdDev(j);
double C = GetCovariance(i, j);
double sum =
Sxxyy[i][j]
-2.*Sxyy[i][j]*mx - 2.*Sxxy[i][j]*my
+ 4.*Sxy[i][j]*mx*my
+ Svv[i]*my*my + Svv[j]*mx*mx
- 2.*Sv[i]*mx*my*my - 2.*Sv[j]*mx*mx*my
+ mx*mx*my*my;
double D = (S1 > 1.) ? sum / (S1 - 1.) : 0.;
double C_var = (S1 > 2.) ? (D + sx*sx*sy*sy/(S1 - 1.) - (S1-2.)/(S1-1.)*C*C) / S1 : 0.;
double C_s = (C_var > 0.) ? sqrt(C_var) : 0.;
return C_s;
}
double GetCorrelationUnc(unsigned int i, unsigned int j) const
{
// WARNING: the calculation below assumes no correlation between C, si_i and si_j, which
// might not be correct - in that case it gives an upper bound for the uncertainty
double C = GetCovariance(i, j), C_unc = GetCovarianceUnc(i, j);
double si_i = GetStdDev(i), si_i_unc = GetStdDevUnc(i);
double si_j = GetStdDev(j), si_j_unc = GetStdDevUnc(j);
double rho = C / (si_i * si_j);
double sum =
(C != 0. && si_i != 0. && si_j != 0.) ? pow(C_unc / C, 2.) + pow(si_i_unc / si_i, 2.) + pow(si_j_unc / si_j, 2.) : 0.;
double rho_unc = fabs(rho) * sqrt(sum);
return rho_unc;
}
TMatrixDSym GetCovarianceMatrix() const
{
TMatrixDSym m(dim);
for (unsigned int i = 0; i < dim; i++)
for (unsigned int j = 0; j < dim; j++)
m(i, j) = GetCovariance(i, j);
return m;
}
//--------------------
// print methods
//--------------------
void PrintStat() const
{
printf("entries: %.3E\n", S1);
}
void PrintMeanAndStdDev() const
{
for (unsigned int i = 0; i < dim; i++)
{
double mu = GetMean(i);
double mu_unc = GetMeanUnc(i);
double s = GetStdDev(i);
double s_unc = GetStdDevUnc(i);
printf("%s: mean %+.3E +- %.3E, std. dev. = %.3E +- %.3E\n", QLabel(i).c_str(), mu, mu_unc, s, s_unc);
}
}
void PrintCovariance() const
{
printf(" ");
for (unsigned int i = 0; i < dim; i++)
printf(" %6s", QLabel(i).c_str());
printf("\n");
for (unsigned int i = 0; i < dim; i++)
{
printf("%6s", QLabel(i).c_str());
for (unsigned int j = 0; j < dim; j++)
printf(" %+.3f", GetCovariance(i, j));
printf("\n");
}
}
void PrintCorrelation()
{
printf(" ");
for (unsigned int i = 0; i < dim; i++)
printf(" %6s", QLabel(i).c_str());
printf("\n");
for (unsigned int i = 0; i < dim; i++)
{
printf("%6s", QLabel(i).c_str());
for (unsigned int j = 0; j < dim; j++)
printf(" %+.3f", GetCorrelation(i, j));
printf("\n");
}
}
};