-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbayesian_deepssm.py
262 lines (238 loc) · 11.3 KB
/
bayesian_deepssm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
import torch
from torch import nn
import torch.nn.functional as F
import sys
import math
import json
import numpy as np
from collections import OrderedDict
import net_utils
from torch.autograd import Variable
from numbers import Number
# import torch.distributions as dist
from torch.distributions.multivariate_normal import MultivariateNormal
from layers import *
'''
BayesianDeepSSM
'''
class BayesianDeepSSMNet(nn.Module):
def __init__(self, config_file, dataset):
super(BayesianDeepSSMNet, self).__init__()
with open(config_file) as json_file:
config = json.load(json_file)
self.config = config
self.device = config["device"]
# Set dimensions
self.y_dim = dataset.corrs[0].shape[0]*3
self.x_dim = dataset.imgs.shape[-3:]
self.z_dim = config['num_latent_dim']
self.dropout = config['dropout']
self.batch_ensemble = config['batch_ensemble']
# Encoder output dim
if not config['encoder']['stochastic']:
self.z_dist_dim = self.z_dim
else:
# Set z distribution dimension
self.z_dist_dim = self.z_dim
if config['encoder']['covariance_type']=='diagonal':
self.z_dist_dim += self.z_dim
elif config['encoder']['covariance_type']=='lower_tri':
self.z_dist_dim += (self.z_dim*(self.z_dim+1)//2)
elif config['encoder']['covariance_type']=='full':
self.z_dist_dim += (self.z_dim*self.z_dim)
# Set encoder
self.encoder = Encoder(self.x_dim, self.z_dist_dim, self.dropout, self.batch_ensemble)
# Set decoder
if config['decoder']['linear']:
self.decoder = LinearDecoder(self.z_dim, self.y_dim)
else:
if config['decoder']['stochastic']:
self.decoder = NonLinearDecoder(self.z_dim, self.y_dim, self.dropout, self.batch_ensemble)
else:
self.decoder = NonLinearDecoder(self.z_dim, self.y_dim)
def forward(self, x, num_samples=1, use_dropout=False):
''' Encode '''
z, encoder_reg = self.encoder(x, use_dropout)
# Deterministic z
if not self.config['encoder']['stochastic']:
z_mean = z
z_log_var = torch.zeros(z_mean.size()) # placeholder
# Stochastic z
else:
z_mean = z[:,:self.z_dim]
z_log_var = z[:,self.z_dim:]
''' Decode '''
# Deterministic z
if not self.config['encoder']['stochastic']:
y_mean, decoder_reg = self.decoder(z_mean, use_dropout)
y_log_var = torch.zeros(y_mean.size()) # placeholder
# Stochastic z
else:
# If sampling off (test mode)
if num_samples==0:
y_mean, decoder_reg = self.decoder(z_mean, use_dropout)
y_log_var = torch.zeros(y_mean.size()) # placeholder
# If sampling on
else:
if self.config['encoder']['covariance_type']=='diagonal':
zs = net_utils.sample_diagonal_MultiGauss(z_mean, z_log_var, num_samples)
elif self.config['encoder']['covariance_type']=='lower_tri':
pass
elif self.config['encoder']['covariance_type']=='full':
pass
# Decode
ys, decoder_reg = self.decoder(zs, use_dropout)
ys = ys.reshape(num_samples, x.shape[0], ys.shape[1])
y_mean = ys.mean(0)
y_log_var = torch.log(ys.var(0))
return [z_mean, z_log_var], [y_mean, y_log_var], (encoder_reg+decoder_reg)
class ConvolutionalBackbone(nn.Module):
def __init__(self, x_dim, dropout={"type":None}, batch_ensemble={"enabled":False}):
super(ConvolutionalBackbone, self).__init__()
self.x_dim = x_dim
# basically using the number of dims and the number of poolings to be used
# figure out the size of the last fc layer so that this network is general to
# any images
self.out_fc_dim = np.copy(x_dim)
padvals = [4, 8, 8]
for i in range(3):
self.out_fc_dim[0] = net_utils.poolOutDim(self.out_fc_dim[0] - padvals[i], 2)
self.out_fc_dim[1] = net_utils.poolOutDim(self.out_fc_dim[1] - padvals[i], 2)
self.out_fc_dim[2] = net_utils.poolOutDim(self.out_fc_dim[2] - padvals[i], 2)
self.conv_out_dim = self.out_fc_dim[0]*self.out_fc_dim[1]*self.out_fc_dim[2]*192
# self.fc_out_dim = int(self.conv_out_dim*.05)
self.fc_out_dim = int(self.conv_out_dim*.02)
self.final_dim = int(self.conv_out_dim*.01)
self.dropout_type = dropout['type']
if batch_ensemble['enabled']:
self.batch_ensemble_num_models = batch_ensemble['num_models']
self.mixup = batch_ensemble['mixup']
else:
self.batch_ensemble_num_models = 0
self.mixup = False
# Set convolution blocks
BATCH_NORM = True
self.conv_blocks = nn.ModuleList()
self.conv_blocks.append(Conv3d_Block( 1, 12, 5, batch_norm=BATCH_NORM, max_pool=True, be_num_models=self.batch_ensemble_num_models, be_mixup=self.mixup))
self.conv_blocks.append(Conv3d_Block(12, 24, 5, batch_norm=BATCH_NORM, max_pool=False, be_num_models=self.batch_ensemble_num_models, be_mixup=self.mixup))
self.conv_blocks.append(Conv3d_Block(24, 48, 5, batch_norm=BATCH_NORM, max_pool=True, be_num_models=self.batch_ensemble_num_models, be_mixup=self.mixup))
self.conv_blocks.append(Conv3d_Block(48, 96, 5, batch_norm=BATCH_NORM, max_pool=False, be_num_models=self.batch_ensemble_num_models, be_mixup=self.mixup))
self.conv_blocks.append(Conv3d_Block(96,192, 5, batch_norm=BATCH_NORM, max_pool=True, be_num_models=self.batch_ensemble_num_models, be_mixup=self.mixup))
# Set conv 3D dropout
self.conv_dropouts = nn.ModuleList()
for i in range(5):
if self.dropout_type=="MC":
self.conv_dropouts.append(nn.Dropout3d(dropout["params"]["rate"]))
elif self.dropout_type=="concrete":
weight_reg = dropout["params"]["lengthscale"]**2./dropout["params"]["size"]
drop_reg = 2./(dropout["params"]["size"]*1000)
self.conv_dropouts.append(SpatialConcreteDropout(weight_reg, drop_reg, dropout["params"]["init_rate"], dropout["params"]["init_rate"]))
# Set fully connected blocks
self.fc_blocks = nn.ModuleList()
self.fc_blocks.append(FC_Block(self.conv_out_dim, self.fc_out_dim, flatten=True, be_num_models=self.batch_ensemble_num_models, be_mixup=self.mixup))
self.fc_blocks.append(FC_Block(self.fc_out_dim, self.final_dim, flatten=False, be_num_models=self.batch_ensemble_num_models, be_mixup=self.mixup))
# Set fc 1d dropouts
self.fc_dropouts = nn.ModuleList()
for i in range(2):
if self.dropout_type=="MC":
self.fc_dropouts.append(nn.Dropout(dropout["params"]["rate"]))
elif self.dropout_type=="concrete":
weight_reg = dropout["params"]["lengthscale"]**2./dropout["params"]["size"]
drop_reg = 2./(dropout["params"]["size"]*1000)
self.fc_dropouts.append(ConcreteDropout(weight_reg, drop_reg, dropout["params"]["init_rate"], dropout["params"]["init_rate"]))
def forward(self, x, use_dropout):
# Regularization is 0 unless dropout is concrete
regularization = torch.tensor(0, device=x.device).type(x.dtype) # placeholder
if self.dropout_type is None or use_dropout is False:
for i in range(5):
x = self.conv_blocks[i](x)
for i in range(2):
x = self.fc_blocks[i](x)
elif self.dropout_type=='concrete':
regularization = torch.empty(7, device=x.device, dtype=x.dtype)
for i in range(5):
x, regularization[i] = self.conv_dropouts[i](x, self.conv_blocks[i])
for i in range(2):
x, regularization[i+5] = self.fc_dropouts[i](x, self.fc_blocks[i])
regularization = regularization.sum()
else:
for i in range(5):
x = self.conv_dropouts[i](self.conv_blocks[i](x))
for i in range(2):
x = self.fc_dropouts[i](self.fc_blocks[i](x))
return x, regularization
class Encoder(nn.Module):
def __init__(self, x_dim, z_dist_dim, dropout={"type":None}, batch_ensemble={"enabled":False}):
super(Encoder, self).__init__()
self.ConvolutionalBackbone = ConvolutionalBackbone(x_dim, dropout, batch_ensemble)
if batch_ensemble["enabled"]:
self.pred_z_dist = BatchEnsemble_orderFC(self.ConvolutionalBackbone.final_dim, z_dist_dim, \
num_models=batch_ensemble["num_models"], mixup=batch_ensemble["mixup"])
else:
self.pred_z_dist = nn.Linear(self.ConvolutionalBackbone.final_dim, z_dist_dim)
def forward(self, x, use_dropout):
features, regularization = self.ConvolutionalBackbone(x, use_dropout)
z_dist = self.pred_z_dist(features)
return z_dist, regularization
### Decoders
class LinearDecoder(nn.Module):
def __init__(self, num_latent, num_corr):
super(LinearDecoder, self).__init__()
self.num_latent = num_latent
self.num_corr = num_corr
self.pred_y_mean = nn.Linear(self.num_latent, self.num_corr)
def forward(self, z, use_dropout=False):
y_mean = self.pred_y_mean(z)
# y_mean = y_mean.reshape(*y_mean.size()[:-1], self.num_corr//3, 3)
regularization = torch.tensor(0, device=z.device).type(z.dtype) # placeholder
return y_mean, regularization
class NonLinearDecoder(nn.Module):
def __init__(self, z_dim, y_dim, dropout={"type":None}, batch_ensemble={"enabled":False}):
super(NonLinearDecoder, self).__init__()
self.dropout_rate = 0.2
self.z_dim = z_dim
self.y_dim = y_dim
self.mid_dim1 = int((z_dim+y_dim)/3)
self.mid_dim2 = 2*self.mid_dim1
self.dropout_type = dropout['type']
if batch_ensemble['enabled']:
self.batch_ensemble_num_models = batch_ensemble['num_models']
self.mixup = batch_ensemble['mixup']
else:
self.batch_ensemble_num_models = 0
self.mixup = False
# Set fully connected blocks
self.fc_blocks = nn.ModuleList()
self.fc_blocks.append(FC_Block(self.z_dim, int((z_dim+y_dim)/4), flatten=False, be_num_models=self.batch_ensemble_num_models, be_mixup=self.mixup))
self.fc_blocks.append(FC_Block(int((z_dim+y_dim)/4), int((z_dim+y_dim)/2), flatten=False, be_num_models=self.batch_ensemble_num_models, be_mixup = self.mixup))
self.fc_blocks.append(FC_Block(int((z_dim+y_dim)/2), int(3*(z_dim+y_dim)/4), flatten=False, be_num_models=self.batch_ensemble_num_models, be_mixup = self.mixup))
# Set fc 1d dropouts
self.fc_dropouts = nn.ModuleList()
for i in range(3):
if self.dropout_type=="MC":
self.fc_dropouts.append(nn.Dropout(dropout["params"]["rate"]))
elif self.dropout_type=="concrete":
weight_reg = dropout["params"]["lengthscale"]**2./dropout["params"]["size"]
drop_reg = 2./(dropout["params"]["size"]*1000)
self.fc_dropouts.append(ConcreteDropout(weight_reg, drop_reg, dropout["params"]["init_rate"], dropout["params"]["init_rate"]))
if batch_ensemble["enabled"]:
self.pred_y = BatchEnsemble_orderFC(int(3*(z_dim+y_dim)/4), self.y_dim, \
num_models=batch_ensemble["num_models"], mixup=batch_ensemble["mixup"])
else:
self.pred_y = nn.Linear(int(3*(z_dim+y_dim)/4), self.y_dim)
def forward(self, z, use_dropout):
# Regularization is 0 unless dropout is concrete
regularization = torch.tensor(0, device=z.device).type(z.dtype) # placeholder
if self.dropout_type is None or use_dropout is False:
for i in range(3):
z = self.fc_blocks[i](z)
elif self.dropout_type=='concrete':
regularization = torch.empty(3, device=z.device, dtype=z.dtype)
for i in range(3):
z, regularization[i] = self.fc_dropouts[i](z, self.fc_blocks[i])
regularization = regularization.sum()
else:
for i in range(3):
z = self.fc_dropouts[i](self.fc_blocks[i](z))
y = self.pred_y(z)
return y, regularization