-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathfinetune.py
239 lines (193 loc) · 6.99 KB
/
finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
#! -*- coding: utf-8 -*-
# 微调T5 PEGASUS做Seq2Seq任务
# 介绍链接:https://kexue.fm/archives/8209
from __future__ import print_function
import json
import numpy as np
import pandas as pd
from tqdm import tqdm
from bert4keras.backend import keras, K
from bert4keras.layers import Loss
from bert4keras.models import build_transformer_model
from bert4keras.tokenizers import Tokenizer
from bert4keras.optimizers import Adam
from bert4keras.snippets import sequence_padding, open
from bert4keras.snippets import DataGenerator, AutoRegressiveDecoder
from keras.models import Model
from rouge import Rouge # pip install rouge
from nltk.translate.bleu_score import sentence_bleu, SmoothingFunction
import jieba
import re
jieba.initialize()
# 基本参数
max_c_len = 500
max_t_len = 200
batch_size = 1
epochs = 40
# 模型路径
config_path = './chinese_t5_pegasus_base/config.json'
checkpoint_path = './chinese_t5_pegasus_base/model.ckpt'
dict_path = './chinese_t5_pegasus_base/vocab.txt'
def process_summary(summary):
# test = summary.replace('\n\n','\n').split('\n')
pattern = re.compile(r'.*?beginbegin([\s\S]*?)endend.*?')
summary_text = ''.join(re.findall(pattern, summary))
return summary_text
def load_data_customer(filename,type):
"""加载数据
单条格式:(标题, 正文)
"""
df = pd.read_excel(filename, engine='openpyxl')
D = []
if type == 'train':
start = 0
end = int(len(df)*0.8)
elif type =='test':
start = int(len(df) * 0.8)
end = len(df)
elif type =='valid':
start = int(len(df) * 0.8)
end = len(df)
for i in range(start,end):
main_file = df['正文'][i].replace('\n', '').replace(' ', '')
summary = df['摘要'][i]
summary_text = process_summary(summary).replace('\n', '').replace(' ', '')
D.append((summary_text, main_file))
return D
def load_data(filename):
"""加载数据
单条格式:(标题, 正文)
"""
D = []
with open(filename, encoding='utf-8') as f:
for l in f:
title, content = l.strip().split('\t')
D.append((title, content))
return D
# 加载数据集
train_data = load_data_customer('./customer.xlsx','train')
valid_data = load_data_customer('./customer.xlsx','valid')
test_data = load_data_customer('./customer.xlsx','test')
# 加载数据集
# train_data = load_data_customer('./customer.tsv')
# valid_data = load_data_customer('./train.tsv')
# test_data = load_data_customer('./train.tsv')
# 构建分词器
tokenizer = Tokenizer(
dict_path,
do_lower_case=True,
pre_tokenize=lambda s: jieba.cut(s, HMM=False)
)
class data_generator(DataGenerator):
"""数据生成器
"""
def __iter__(self, random=False):
batch_c_token_ids, batch_t_token_ids = [], []
for is_end, (title, content) in self.sample(random):
c_token_ids, _ = tokenizer.encode(content, maxlen=max_c_len)
t_token_ids, _ = tokenizer.encode(title, maxlen=max_t_len)
batch_c_token_ids.append(c_token_ids)
batch_t_token_ids.append(t_token_ids)
if len(batch_c_token_ids) == self.batch_size or is_end:
batch_c_token_ids = sequence_padding(batch_c_token_ids)
batch_t_token_ids = sequence_padding(batch_t_token_ids)
yield [batch_c_token_ids, batch_t_token_ids], None
batch_c_token_ids, batch_t_token_ids = [], []
class CrossEntropy(Loss):
"""交叉熵作为loss,并mask掉输入部分
"""
def compute_loss(self, inputs, mask=None):
y_true, y_pred = inputs
y_true = y_true[:, 1:] # 目标token_ids
y_mask = K.cast(mask[1], K.floatx())[:, 1:] # 解码器自带mask
y_pred = y_pred[:, :-1] # 预测序列,错开一位
loss = K.sparse_categorical_crossentropy(y_true, y_pred)
loss = K.sum(loss * y_mask) / K.sum(y_mask)
return loss
t5 = build_transformer_model(
config_path=config_path,
checkpoint_path=checkpoint_path,
model='t5.1.1',
return_keras_model=False,
name='T5',
)
encoder = t5.encoder
decoder = t5.decoder
model = t5.model
model.summary()
output = CrossEntropy(1)([model.inputs[1], model.outputs[0]])
model = Model(model.inputs, output)
model.compile(optimizer=Adam(2e-4))
class AutoTitle(AutoRegressiveDecoder):
"""seq2seq解码器
"""
@AutoRegressiveDecoder.wraps(default_rtype='probas')
def predict(self, inputs, output_ids, states):
c_encoded = inputs[0]
return self.last_token(decoder).predict([c_encoded, output_ids])
def generate(self, text, topk=1):
c_token_ids, _ = tokenizer.encode(text, maxlen=max_c_len)
c_encoded = encoder.predict(np.array([c_token_ids]))[0]
output_ids = self.beam_search([c_encoded], topk=topk) # 基于beam search
return tokenizer.decode(output_ids)
autotitle = AutoTitle(
start_id=tokenizer._token_start_id,
end_id=tokenizer._token_end_id,
maxlen=max_t_len
)
class Evaluator(keras.callbacks.Callback):
"""评估与保存
"""
def __init__(self):
self.rouge = Rouge()
self.smooth = SmoothingFunction().method1
self.best_bleu = 0.
def on_epoch_end(self, epoch, logs=None):
metrics = self.evaluate(valid_data) # 评测模型
if metrics['bleu'] > self.best_bleu:
self.best_bleu = metrics['bleu']
model.save_weights('./best_model.weights') # 保存模型
metrics['best_bleu'] = self.best_bleu
print('valid_data:', metrics)
def evaluate(self, data, topk=1):
total = 0
rouge_1, rouge_2, rouge_l, bleu = 0, 0, 0, 0
for title, content in tqdm(data):
total += 1
title = ' '.join(title).lower()
pred_title = ' '.join(autotitle.generate(content,
topk=topk)).lower()
print("content: ", content)
print("title: ", title)
print("pred_title: ", pred_title)
if pred_title.strip():
scores = self.rouge.get_scores(hyps=pred_title, refs=title)
rouge_1 += scores[0]['rouge-1']['f']
rouge_2 += scores[0]['rouge-2']['f']
rouge_l += scores[0]['rouge-l']['f']
bleu += sentence_bleu(
references=[title.split(' ')],
hypothesis=pred_title.split(' '),
smoothing_function=self.smooth
)
rouge_1 /= total
rouge_2 /= total
rouge_l /= total
bleu /= total
return {
'rouge-1': rouge_1,
'rouge-2': rouge_2,
'rouge-l': rouge_l,
'bleu': bleu,
}
if __name__ == '__main__':
evaluator = Evaluator()
train_generator = data_generator(train_data, batch_size)
model.fit(
train_generator.forfit(),
steps_per_epoch=len(train_generator),
epochs=epochs,
callbacks=[evaluator]
)
else:
model.load_weights('./best_model.weights')