-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathevaluation.py
209 lines (170 loc) · 6.09 KB
/
evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
#! -*- coding: utf-8 -*-
import jieba
import numpy as np
import pandas as pd
import tqdm
import re
import json
from bert4keras.models import build_transformer_model
from bert4keras.snippets import AutoRegressiveDecoder
from bert4keras.tokenizers import Tokenizer
from nltk.translate.bleu_score import sentence_bleu, SmoothingFunction
from rouge import Rouge
from boto3.session import Session
config_path = './chinese_t5_pegasus_base/config.json'
checkpoint_path = './chinese_t5_pegasus_base/model.ckpt'
dict_path = './chinese_t5_pegasus_base/vocab.txt'
def process_summary(summary):
# test = summary.replace('\n\n','\n').split('\n')
pattern = re.compile(r'.*?beginbegin([\s\S]*?)endend.*?')
summary_text = ''.join(re.findall(pattern, summary))
return summary_text
def load_data_customer(filename):
"""加载数据
单条格式:(标题, 正文)
"""
df = pd.read_excel(filename, engine='openpyxl')
D = []
for i in range(len(df)):
main_file = df['正文'][i].replace('\n', '').replace(' ', '')
summary = df['摘要'][i]
summary_text = process_summary(summary).replace('\n', '').replace(' ', '')
D.append((summary_text, main_file))
return D
def get_summary_pegusas():
# bert4keras版本
max_c_len = 500
max_t_len = 200
tokenizer = Tokenizer(
dict_path,
do_lower_case=True,
pre_tokenize=lambda s: jieba.cut(s, HMM=False)
)
t5 = build_transformer_model(
config_path=config_path,
checkpoint_path=checkpoint_path,
model='t5.1.1',
return_keras_model=False,
name='T5',
)
encoder = t5.encoder
decoder = t5.decoder
model = t5.model
model.load_weights('./best_model.weights')
class AutoTitle(AutoRegressiveDecoder):
"""seq2seq解码器
"""
@AutoRegressiveDecoder.wraps(default_rtype='probas')
def predict(self, inputs, output_ids, states):
c_encoded = inputs[0]
return self.last_token(decoder).predict([c_encoded, output_ids])
def generate(self, text, topk=1):
c_token_ids, _ = tokenizer.encode(text, maxlen=max_c_len)
c_encoded = encoder.predict(np.array([c_token_ids]))[0]
output_ids = self.beam_search([c_encoded], topk=topk) # 基于beam search
return tokenizer.decode(output_ids)
autotitle = AutoTitle(
start_id=tokenizer._token_start_id,
end_id=tokenizer._token_end_id,
maxlen=max_t_len
)
return autotitle
def invoke_endpoint_textrank(data):
data = {
"data": data}
session = Session()
runtime = session.client("runtime.sagemaker")
response = runtime.invoke_endpoint(
EndpointName='textrank',
ContentType="application/json",
Body=json.dumps(data),
)
result = json.loads(response["Body"].read())
# print ("<<<< result: ",''.join(result['res']['摘要列表']))
return ''.join(result['res']['摘要列表'])
def get_bertsum(result_pth, ):
result_pth, total
txt[0].replace('<q>', '').replace('\n', '')
def evaluation(data, type):
smooth = SmoothingFunction().method1
best_bleu = 0.
total = 0
rouge_1, rouge_2, rouge_l, bleu = 0, 0, 0, 0
if type == 'pegusas':
autotitle = get_summary_pegusas()
if type == 'bertsum':
with open('/home/ec2-user/SageMaker/bertsum-chinese-LAI/results/MS_step30000.candidate', 'r') as save_pred:
bertsum_res = save_pred.readlines()
title_ls = []
pred_title_ls = []
rouge_1_f_score_ls = []
rouge_2_f_score_ls = []
content_ls = []
rouge_l_f_score_ls = []
bleu_ls = []
for (title, content) in data:
total += 1
title = ' '.join(title).lower()
if type == 'pegusas':
pred_title = ' '.join(autotitle.generate(content,
topk=1)).lower()
elif type =='textrank':
pred_title = invoke_endpoint_textrank(content)
elif type=='bertsum':
pred_title = bertsum_res[total].replace('<q>','').replace('\n','')
print("content: ", content)
print("title: ", title)
print("pred_title: ", pred_title)
if pred_title.strip():
scores = Rouge().get_scores(hyps=pred_title, refs=title)
rouge_1 += scores[0]['rouge-1']['f']
rouge_2 += scores[0]['rouge-2']['f']
rouge_l += scores[0]['rouge-l']['f']
bleu += sentence_bleu(
references=[title.split(' ')],
hypothesis=pred_title.split(' '),
smoothing_function=smooth
)
content_ls.append(content)
title_ls.append(title)
pred_title_ls.append(pred_title)
rouge_1_f_score_ls.append(scores[0]['rouge-1']['f'])
rouge_2_f_score_ls.append(scores[0]['rouge-2']['f'])
rouge_l_f_score_ls.append(scores[0]['rouge-2']['f'])
bleu_ls.append(sentence_bleu(
references=[title.split(' ')],
hypothesis=pred_title.split(' '),
smoothing_function=smooth
)
)
rouge_1 /= total
rouge_2 /= total
rouge_l /= total
bleu /= total
res = pd.DataFrame({"content": content_ls, \
"title": title_ls, \
"pred_title": pred_title_ls, \
"rouge_1_f_score": rouge_1_f_score_ls, \
"rouge_2_f_score": rouge_2_f_score_ls,
"rouge_l_f_score_ls": rouge_l_f_score_ls,
"bleu":bleu_ls})
print (res.head())
name = 'result_'+str(type)+'.csv'
res.to_csv(name, index=False, encoding='utf-8')
print ("finish process!")
return {
'rouge-1': rouge_1,
'rouge-2': rouge_2,
'rouge-l': rouge_l,
'bleu': bleu,
}
def main():
data = load_data_customer('./customer.xlsx')
#res = evaluation(data, 'pegusas')
#print (res)
#res = evaluation(data, 'textrank')
#print (res)
res = evaluation(data, 'bertsum')
print(res)
if __name__ == '__main__':
main()