-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchat.py
31 lines (29 loc) · 1.14 KB
/
chat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
import torch
import gradio as gr
from transformers import AutoModel
from transformers import AutoProcessor
import spaces
# Load pre-trained models for image captioning and language modeling
model3 = AutoModel.from_pretrained("unum-cloud/uform-gen2-dpo", trust_remote_code=True)
processor = AutoProcessor.from_pretrained("unum-cloud/uform-gen2-dpo", trust_remote_code=True)
# Define a function for image captioning
@spaces.GPU(queue=False)
def videochat(image3, prompt3):
# Process input image and prompt
inputs = processor(text=[prompt3], images=[image3], return_tensors="pt")
# Generate captions
with torch.inference_mode():
output = model3.generate(
**inputs,
do_sample=False,
use_cache=True,
max_new_tokens=256,
eos_token_id=151645,
pad_token_id=processor.tokenizer.pad_token_id
)
prompt_len = inputs["input_ids"].shape[1]
# Decode and return the generated captions
decoded_text = processor.batch_decode(output[:, prompt_len:])[0]
if decoded_text.endswith("<|im_end|>"):
decoded_text = decoded_text[:-10]
yield decoded_text