-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_ShortcutV2V.py
executable file
·92 lines (75 loc) · 4.48 KB
/
test_ShortcutV2V.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
"""General-purpose test script for image-to-image translation.
Once you have trained your model with train.py, you can use this script to test the model.
It will load a saved model from '--checkpoints_dir' and save the results to '--results_dir'.
It first creates model and dataset given the option. It will hard-code some parameters.
It then runs inference for '--num_test' images and save results to an HTML file.
Example (You need to train models first or download pre-trained models from our website):
Test a CycleGAN model (both sides):
python test.py --dataroot ./datasets/maps --name maps_cyclegan --model cycle_gan
Test a CycleGAN model (one side only):
python test.py --dataroot datasets/horse2zebra/testA --name horse2zebra_pretrained --model test --no_dropout
The option '--model test' is used for generating CycleGAN results only for one side.
This option will automatically set '--dataset_mode single', which only loads the images from one set.
On the contrary, using '--model cycle_gan' requires loading and generating results in both directions,
which is sometimes unnecessary. The results will be saved at ./results/.
Use '--results_dir <directory_path_to_save_result>' to specify the results directory.
Test a pix2pix model:
python test.py --dataroot ./datasets/facades --name facades_pix2pix --model pix2pix --direction BtoA
See options/base_options.py and options/test_options.py for more test options.
See training and test tips at: https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/docs/tips.md
See frequently asked questions at: https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/docs/qa.md
"""
import os
from options.test_options import TestOptions
from data.data_loader import CreateDataLoader
from util import html
from util.util import tensor2im
import cv2
import numpy as np
from models.models import create_model, create_model_ShortcutV2V
try:
import wandb
except ImportError:
print('Warning: wandb package cannot be found. The option "--use_wandb" will result in error.')
if __name__ == '__main__':
opt = TestOptions().parse() # get test options
# hard-code some parameters for test
opt.num_threads = 0 # test code only supports num_threads = 0
opt.batch_size = 1 # test code only supports batch_size = 1
opt.serial_batches = True # disable data shuffling; comment this line if results on randomly chosen images are needed.
opt.no_flip = True # no flip; comment this line if results on flipped images are needed.
opt.display_id = -1 # no visdom display; the test code saves the results to a HTML file.
opt.model = "unsup_single"
mainG_path = opt.main_G_path
model = create_model_ShortcutV2V(opt) # create a RED model
print(model)
mainG = create_model(opt) # create main generator
model.setup_with_G(opt, mainG) # setup RED model with default option
# if opt.offset_g == "multi_level":
# model.setup_with_flowNet(opt)
data_loader = CreateDataLoader(opt)
dataset = data_loader.load_data()
dataset_size = len(data_loader)
# initialize logger
# if opt.use_wandb:
# wandb_run = wandb.init(project='CycleGAN-and-pix2pix', name=opt.name, config=opt) if not wandb.run else wandb.run
# wandb_run._label(repo='CycleGAN-and-pix2pix')
# # create a website
web_dir = os.path.join(opt.results_dir, opt.name, '%s_%s' % (opt.phase, opt.which_epoch)) # define the website directory
print("saved in %s" % web_dir)
# if opt.load_iter > 0: # load_iter is 0 by default
# web_dir = '{:s}_iter{:d}'.format(web_dir, opt.load_iter)
# print('creating web directory', web_dir)
# webpage = html.HTML(web_dir, 'Experiment = %s, Phase = %s, Epoch = %s' % (opt.name, opt.phase, opt.epoch))
# test
#video = cv2.VideoWriter(os.path.join(web_dir, "video.avi"), fourcc=cv2.VideoWriter_fourcc(*'DIVX'), fps=30, frameSize=(512, 256))
# test with eval mode. This only affects layers like batchnorm and dropout.
# For [pix2pix]: we use batchnorm and dropout in the original pix2pix. You can experiment it with and without eval() mode.
# For [CycleGAN]: It should not affect CycleGAN as CycleGAN uses instancenorm without dropout.
if not opt.isTrain:
model.eval()
model.test_model(web_dir)
# for i, data in enumerate(dataset):
# if i >= opt.num_test: # only apply our model to opt.num_test images.
# break
#webpage.save() # save the HTML