-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMap.v
741 lines (613 loc) · 21.1 KB
/
Map.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
Require Import Classical Sets ClassicalEpsilon FunctionalExtensionality.
Set Implicit Arguments.
Module Type S.
Parameter fmap : Type -> Type -> Type.
Parameter empty : forall A B, fmap A B.
Parameter lookup : forall A B, fmap A B -> A -> option B.
Parameter add : forall A B, fmap A B -> A -> B -> fmap A B.
Parameter remove : forall A B, fmap A B -> A -> fmap A B.
Parameter join : forall A B, fmap A B -> fmap A B -> fmap A B.
Parameter merge : forall A B, (option B -> option B -> option B) -> fmap A B -> fmap A B -> fmap A B.
Parameter restrict : forall A B, (A -> Prop) -> fmap A B -> fmap A B.
Parameter includes : forall A B, fmap A B -> fmap A B -> Prop.
Notation "$0" := (empty _ _).
Notation "m $+ ( k , v )" := (add m k v) (at level 50, left associativity).
Infix "$-" := remove (at level 50, left associativity).
Infix "$++" := join (at level 50, left associativity).
Infix "$?" := lookup (at level 50, no associativity).
Infix "$<=" := includes (at level 90).
Parameter dom : forall A B, fmap A B -> set A.
Axiom fmap_ext : forall A B (m1 m2 : fmap A B),
(forall k, m1 $? k = m2 $? k)
-> m1 = m2.
Axiom lookup_empty : forall A B k, empty A B $? k = None.
Axiom includes_lookup : forall A B (m m' : fmap A B) k v,
m $? k = Some v
-> m $<= m'
-> lookup m' k = Some v.
Axiom includes_add : forall A B (m m' : fmap A B) k v,
m $<= m'
-> add m k v $<= add m' k v.
Axiom lookup_add_eq : forall A B (m : fmap A B) k1 k2 v,
k1 = k2
-> add m k1 v $? k2 = Some v.
Axiom lookup_add_ne : forall A B (m : fmap A B) k k' v,
k' <> k
-> add m k v $? k' = m $? k'.
Axiom lookup_remove_eq : forall A B (m : fmap A B) k1 k2,
k1 = k2
-> remove m k1 $? k2 = None.
Axiom lookup_remove_ne : forall A B (m : fmap A B) k k',
k' <> k
-> remove m k $? k' = m $? k'.
Axiom lookup_join1 : forall A B (m1 m2 : fmap A B) k,
k \in dom m1
-> (m1 $++ m2) $? k = m1 $? k.
Axiom lookup_join2 : forall A B (m1 m2 : fmap A B) k,
~k \in dom m1
-> (m1 $++ m2) $? k = m2 $? k.
Axiom join_comm : forall A B (m1 m2 : fmap A B),
dom m1 \cap dom m2 = constant nil
-> m1 $++ m2 = m2 $++ m1.
Axiom join_assoc : forall A B (m1 m2 m3 : fmap A B),
(m1 $++ m2) $++ m3 = m1 $++ (m2 $++ m3).
Axiom lookup_merge : forall A B f (m1 m2 : fmap A B) k,
merge f m1 m2 $? k = f (m1 $? k) (m2 $? k).
Axiom merge_empty1 : forall A B f (m : fmap A B),
(forall x, f None x = x)
-> merge f (@empty _ _) m = m.
Axiom merge_empty2 : forall A B f (m : fmap A B),
(forall x, f x None = x)
-> merge f m (@empty _ _) = m.
Axiom merge_empty1_alt : forall A B f (m : fmap A B),
(forall x, f None x = None)
-> merge f (@empty _ _) m = @empty _ _.
Axiom merge_empty2_alt : forall A B f (m : fmap A B),
(forall x, f x None = None)
-> merge f m (@empty _ _) = @empty _ _.
Axiom merge_add1 : forall A B f (m1 m2 : fmap A B) k v,
(forall x y, f (Some x) y = None -> False)
-> ~k \in dom m1
-> merge f (add m1 k v) m2 = match f (Some v) (lookup m2 k) with
| None => merge f m1 m2
| Some v => add (merge f m1 m2) k v
end.
Axiom merge_add2 : forall A B f (m1 m2 : fmap A B) k v,
(forall x y, f x (Some y) = None -> False)
-> ~k \in dom m2
-> merge f m1 (add m2 k v) = match f (lookup m1 k) (Some v) with
| None => merge f m1 m2
| Some v => add (merge f m1 m2) k v
end.
Axiom merge_add1_alt : forall A B f (m1 m2 : fmap A B) k v,
(forall x y, f (Some x) (Some y) = None -> False)
-> ~k \in dom m1
-> k \in dom m2
-> merge f (add m1 k v) m2 = match f (Some v) (lookup m2 k) with
| None => merge f m1 m2
| Some v => add (merge f m1 m2) k v
end.
Axiom empty_includes : forall A B (m : fmap A B), empty A B $<= m.
Axiom dom_empty : forall A B, dom (empty A B) = constant nil.
Axiom dom_add : forall A B (m : fmap A B) (k : A) (v : B),
dom (add m k v) = constant (k :: nil) \cup dom m.
Axiom lookup_restrict_true : forall A B (P : A -> Prop) (m : fmap A B) k,
P k
-> lookup (restrict P m) k = lookup m k.
Axiom lookup_restrict_false : forall A B (P : A -> Prop) (m : fmap A B) k,
~P k
-> lookup (restrict P m) k = None.
Axiom lookup_restrict_true_fwd : forall A B (P : A -> Prop) (m : fmap A B) k v,
lookup (restrict P m) k = Some v
-> P k.
Hint Extern 1 => match goal with
| [ H : lookup (empty _ _) _ = Some _ |- _ ] =>
rewrite lookup_empty in H; discriminate
end : core.
Hint Resolve includes_lookup includes_add empty_includes : core.
Hint Rewrite lookup_empty lookup_add_eq lookup_add_ne lookup_remove_eq lookup_remove_ne
lookup_merge lookup_restrict_true lookup_restrict_false using congruence.
Hint Rewrite dom_empty dom_add.
Ltac maps_equal :=
apply fmap_ext; intros;
repeat (subst; autorewrite with core; try reflexivity;
match goal with
| [ |- context[lookup (add _ ?k _) ?k' ] ] => destruct (classic (k = k')); subst
end).
Hint Extern 3 (_ = _) => maps_equal : core.
Axiom lookup_split : forall A B (m : fmap A B) k v k' v',
(m $+ (k, v)) $? k' = Some v'
-> (k' <> k /\ m $? k' = Some v') \/ (k' = k /\ v' = v).
Hint Rewrite merge_empty1 merge_empty2 using solve [ eauto 1 ].
Hint Rewrite merge_empty1_alt merge_empty2_alt using congruence.
Hint Rewrite merge_add1 using solve [ eauto | unfold Sets.In; autorewrite with core in *; simpl in *; try (normalize_set; simpl); intuition congruence ].
Hint Rewrite merge_add1_alt using solve [ congruence | unfold Sets.In; autorewrite with core in *; simpl in *; try (normalize_set; simpl); intuition congruence ].
Axiom includes_intro : forall K V (m1 m2 : fmap K V),
(forall k v, m1 $? k = Some v -> m2 $? k = Some v)
-> m1 $<= m2.
Axiom lookup_Some_dom : forall K V (m : fmap K V) k v,
m $? k = Some v
-> k \in dom m.
Axiom lookup_None_dom : forall K V (m : fmap K V) k,
m $? k = None
-> ~ k \in dom m.
(* Bits meant for separation logic *)
Section splitting.
Variables K V : Type.
Definition disjoint (h1 h2 : fmap K V) : Prop :=
forall a, h1 $? a <> None
-> h2 $? a <> None
-> False.
Definition split (h h1 h2 : fmap K V) : Prop :=
h = h1 $++ h2.
Axiom split_empty_fwd : forall h h1,
split h h1 $0
-> h = h1.
Axiom split_empty_fwd' : forall h h1,
split h $0 h1
-> h = h1.
Axiom split_empty_bwd : forall h,
split h h $0.
Axiom split_empty_bwd' : forall h,
split h $0 h.
Axiom disjoint_hemp : forall h,
disjoint h $0.
Axiom disjoint_hemp' : forall h,
disjoint $0 h.
Axiom disjoint_comm : forall h1 h2,
disjoint h1 h2
-> disjoint h2 h1.
Axiom split_comm : forall h h1 h2,
disjoint h1 h2
-> split h h1 h2
-> split h h2 h1.
Axiom split_assoc1 : forall h h1 h' h2 h3,
split h h1 h'
-> split h' h2 h3
-> split h (join h1 h2) h3.
Axiom split_assoc2' : forall h h1 h' h2 h3,
split h h1 h'
-> split h' h2 h3
-> disjoint h1 h'
-> disjoint h2 h3
-> split h h2 (join h3 h1).
Axiom split_assoc2 : forall h h1 h' h2 h3,
split h h' h1
-> split h' h2 h3
-> disjoint h' h1
-> disjoint h2 h3
-> split h h2 (join h3 h1).
Axiom disjoint_assoc1 : forall h h1 h' h2 h3,
split h h1 h'
-> split h' h2 h3
-> disjoint h1 h'
-> disjoint h2 h3
-> disjoint (join h1 h2) h3.
Axiom disjoint_assoc2 : forall h h1 h' h2 h3,
split h h' h1
-> split h' h2 h3
-> disjoint h' h1
-> disjoint h2 h3
-> disjoint h2 (join h3 h1).
Axiom split_join : forall h1 h2,
split (join h1 h2) h1 h2.
Axiom split_disjoint : forall h h1 h2 h' h3,
split h h1 h'
-> split h' h2 h3
-> disjoint h1 h'
-> disjoint h2 h3
-> disjoint h1 h2.
Axiom disjoint_assoc3 : forall h h1 h2 h3,
disjoint h h2
-> split h h1 h3
-> disjoint h1 h3
-> disjoint h3 h2.
End splitting.
Hint Immediate disjoint_comm split_comm : core.
Hint Immediate split_empty_bwd disjoint_hemp disjoint_hemp' split_assoc1 split_assoc2 : core.
Hint Immediate disjoint_assoc1 disjoint_assoc2 split_join split_disjoint disjoint_assoc3 : core.
End S.
Module M : S.
Definition fmap (A B : Type) := A -> option B.
Definition empty A B : fmap A B := fun _ => None.
Section decide.
Variable P : Prop.
Lemma decided : inhabited (sum P (~P)).
Proof.
destruct (classic P).
constructor; exact (inl _ H).
constructor; exact (inr _ H).
Qed.
Definition decide : sum P (~P) :=
epsilon decided (fun _ => True).
End decide.
Definition add A B (m : fmap A B) (k : A) (v : B) : fmap A B :=
fun k' => if decide (k' = k) then Some v else m k'.
Definition remove A B (m : fmap A B) (k : A) : fmap A B :=
fun k' => if decide (k' = k) then None else m k'.
Definition join A B (m1 m2 : fmap A B) : fmap A B :=
fun k => match m1 k with
| None => m2 k
| x => x
end.
Definition merge A B f (m1 m2 : fmap A B) : fmap A B :=
fun k => f (m1 k) (m2 k).
Definition lookup A B (m : fmap A B) (k : A) := m k.
Definition restrict A B (P : A -> Prop) (m : fmap A B) : fmap A B :=
fun k => if decide (P k) then m k else None.
Definition includes A B (m1 m2 : fmap A B) :=
forall k v, m1 k = Some v -> m2 k = Some v.
Definition dom A B (m : fmap A B) : set A := fun x => m x <> None.
Theorem fmap_ext : forall A B (m1 m2 : fmap A B),
(forall k, lookup m1 k = lookup m2 k)
-> m1 = m2.
Proof.
intros; extensionality k; auto.
Qed.
Theorem lookup_empty : forall A B (k : A), lookup (empty B) k = None.
Proof.
auto.
Qed.
Theorem includes_lookup : forall A B (m m' : fmap A B) k v,
lookup m k = Some v
-> includes m m'
-> lookup m' k = Some v.
Proof.
auto.
Qed.
Theorem includes_add : forall A B (m m' : fmap A B) k v,
includes m m'
-> includes (add m k v) (add m' k v).
Proof.
unfold includes, add; intuition.
destruct (decide (k0 = k)); auto.
Qed.
Theorem lookup_add_eq : forall A B (m : fmap A B) k1 k2 v,
k1 = k2
-> lookup (add m k1 v) k2 = Some v.
Proof.
unfold lookup, add; intuition.
destruct (decide (k2 = k1)); try tauto.
congruence.
Qed.
Theorem lookup_add_ne : forall A B (m : fmap A B) k k' v,
k' <> k
-> lookup (add m k v) k' = lookup m k'.
Proof.
unfold lookup, add; intuition.
destruct (decide (k' = k)); intuition.
Qed.
Theorem lookup_remove_eq : forall A B (m : fmap A B) k1 k2,
k1 = k2
-> lookup (remove m k1) k2 = None.
Proof.
unfold lookup, remove; intuition.
destruct (decide (k2 = k1)); try tauto.
congruence.
Qed.
Theorem lookup_remove_ne : forall A B (m : fmap A B) k k',
k' <> k
-> lookup (remove m k) k' = lookup m k'.
Proof.
unfold lookup, remove; intuition.
destruct (decide (k' = k)); try tauto.
Qed.
Theorem lookup_join1 : forall A B (m1 m2 : fmap A B) k,
k \in dom m1
-> lookup (join m1 m2) k = lookup m1 k.
Proof.
unfold lookup, join, dom, In; intros.
destruct (m1 k); congruence.
Qed.
Theorem lookup_join2 : forall A B (m1 m2 : fmap A B) k,
~k \in dom m1
-> lookup (join m1 m2) k = lookup m2 k.
Proof.
unfold lookup, join, dom, In; intros.
destruct (m1 k); try congruence.
exfalso; apply H; congruence.
Qed.
Theorem join_comm : forall A B (m1 m2 : fmap A B),
dom m1 \cap dom m2 = constant nil
-> join m1 m2 = join m2 m1.
Proof.
intros; apply fmap_ext; unfold join, lookup; intros.
apply (f_equal (fun f => f k)) in H.
unfold dom, intersection, constant in H; simpl in H.
destruct (m1 k), (m2 k); auto.
exfalso; rewrite <- H.
intuition congruence.
Qed.
Theorem join_assoc : forall A B (m1 m2 m3 : fmap A B),
join (join m1 m2) m3 = join m1 (join m2 m3).
Proof.
intros; apply fmap_ext; unfold join, lookup; intros.
destruct (m1 k); auto.
Qed.
Theorem lookup_merge : forall A B f (m1 m2 : fmap A B) k,
lookup (merge f m1 m2) k = f (m1 k) (m2 k).
Proof.
auto.
Qed.
Theorem merge_empty1 : forall A B f (m : fmap A B),
(forall x, f None x = x)
-> merge f (@empty _ _) m = m.
Proof.
intros; apply fmap_ext; unfold lookup, merge; auto.
Qed.
Theorem merge_empty2 : forall A B f (m : fmap A B),
(forall x, f x None = x)
-> merge f m (@empty _ _) = m.
Proof.
intros; apply fmap_ext; unfold lookup, merge; auto.
Qed.
Theorem merge_empty1_alt : forall A B f (m : fmap A B),
(forall x, f None x = None)
-> merge f (@empty _ _) m = @empty _ _.
Proof.
intros; apply fmap_ext; unfold lookup, merge; auto.
Qed.
Theorem merge_empty2_alt : forall A B f (m : fmap A B),
(forall x, f x None = None)
-> merge f m (@empty _ _) = @empty _ _.
Proof.
intros; apply fmap_ext; unfold lookup, merge; auto.
Qed.
Theorem merge_add1 : forall A B f (m1 m2 : fmap A B) k v,
(forall x y, f (Some x) y = None -> False)
-> ~k \in dom m1
-> merge f (add m1 k v) m2 = match f (Some v) (lookup m2 k) with
| None => merge f m1 m2
| Some v => add (merge f m1 m2) k v
end.
Proof.
intros; apply fmap_ext; unfold lookup, merge, add; intros.
destruct (decide (k0 = k)); auto; subst.
case_eq (f (Some v) (m2 k)); intros.
case_eq (decide (k = k)); congruence.
exfalso; eauto.
case_eq (f (Some v) (m2 k)); intros.
destruct (decide (k0 = k)); congruence.
auto.
Qed.
Theorem merge_add2 : forall A B f (m1 m2 : fmap A B) k v,
(forall x y, f x (Some y) = None -> False)
-> ~k \in dom m2
-> merge f m1 (add m2 k v) = match f (lookup m1 k) (Some v) with
| None => merge f m1 m2
| Some v => add (merge f m1 m2) k v
end.
Proof.
intros; apply fmap_ext; unfold lookup, merge, add; intros.
destruct (decide (k0 = k)); auto; subst.
case_eq (f (m1 k) (Some v)); intros.
case_eq (decide (k = k)); congruence.
exfalso; eauto.
case_eq (f (m1 k) (Some v)); intros.
destruct (decide (k0 = k)); congruence.
auto.
Qed.
Theorem merge_add1_alt : forall A B f (m1 m2 : fmap A B) k v,
(forall x y, f (Some x) (Some y) = None -> False)
-> ~k \in dom m1
-> k \in dom m2
-> merge f (add m1 k v) m2 = match f (Some v) (lookup m2 k) with
| None => merge f m1 m2
| Some v => add (merge f m1 m2) k v
end.
Proof.
intros; apply fmap_ext; unfold lookup, merge, add; intros.
destruct (decide (k0 = k)); auto; subst.
case_eq (f (Some v) (m2 k)); intros.
case_eq (decide (k = k)); congruence.
case_eq (m2 k); intros.
rewrite H3 in H2.
exfalso; eauto.
congruence.
case_eq (f (Some v) (m2 k)); intros.
destruct (decide (k0 = k)); congruence.
auto.
Qed.
Theorem empty_includes : forall A B (m : fmap A B), includes (empty (A := A) B) m.
Proof.
unfold includes, empty; intuition congruence.
Qed.
Theorem dom_empty : forall A B, dom (empty (A := A) B) = constant nil.
Proof.
unfold dom, empty; intros; sets idtac.
Qed.
Theorem dom_add : forall A B (m : fmap A B) (k : A) (v : B),
dom (add m k v) = constant (k :: nil) \cup dom m.
Proof.
unfold dom, add; simpl; intros.
sets ltac:(simpl in *; try match goal with
| [ _ : context[if ?E then _ else _] |- _ ] => destruct E
end; intuition congruence).
Qed.
Lemma lookup_split : forall A B (m : fmap A B) k v k' v',
lookup (add m k v) k' = Some v'
-> (k' <> k /\ lookup m k' = Some v') \/ (k' = k /\ v' = v).
Proof.
unfold lookup, add; simpl; intros.
destruct (decide (k' = k)); intuition congruence.
Qed.
Theorem lookup_restrict_true : forall A B (P : A -> Prop) (m : fmap A B) k,
P k
-> lookup (restrict P m) k = lookup m k.
Proof.
unfold lookup, restrict; intros.
destruct (decide (P k)); tauto.
Qed.
Theorem lookup_restrict_false : forall A B (P : A -> Prop) (m : fmap A B) k,
~P k
-> lookup (restrict P m) k = None.
Proof.
unfold lookup, restrict; intros.
destruct (decide (P k)); tauto.
Qed.
Theorem lookup_restrict_true_fwd : forall A B (P : A -> Prop) (m : fmap A B) k v,
lookup (restrict P m) k = Some v
-> P k.
Proof.
unfold lookup, restrict; intros.
destruct (decide (P k)); intuition congruence.
Qed.
Lemma includes_intro : forall K V (m1 m2 : fmap K V),
(forall k v, lookup m1 k = Some v -> lookup m2 k = Some v)
-> includes m1 m2.
Proof.
auto.
Qed.
Lemma lookup_Some_dom : forall K V (m : fmap K V) k v,
lookup m k = Some v
-> k \in dom m.
Proof.
unfold lookup, dom, In; congruence.
Qed.
Lemma lookup_None_dom : forall K V (m : fmap K V) k,
lookup m k = None
-> ~ k \in dom m.
Proof.
unfold lookup, dom, In; congruence.
Qed.
Section splitting.
Variables K V : Type.
Notation "$0" := (@empty K V).
Notation "m $+ ( k , v )" := (add m k v) (at level 50, left associativity).
Infix "$-" := remove (at level 50, left associativity).
Infix "$++" := join (at level 50, left associativity).
Infix "$?" := lookup (at level 50, no associativity).
Infix "$<=" := includes (at level 90).
Definition disjoint (h1 h2 : fmap K V) : Prop :=
forall a, h1 $? a <> None
-> h2 $? a <> None
-> False.
Definition split (h h1 h2 : fmap K V) : Prop :=
h = h1 $++ h2.
Hint Extern 2 (_ <> _) => congruence : core.
Ltac splt := unfold disjoint, split, join, lookup in *; intros; subst;
try match goal with
| [ |- @eq (fmap K V) _ _ ] => let a := fresh "a" in extensionality a; simpl
end;
repeat match goal with
| [ a : K, H : forall a : K, _ |- _ ] => specialize (H a)
end;
repeat match goal with
| [ H : _ |- _ ] => rewrite H
| [ |- context[match ?E with Some _ => _ | None => _ end] ] => destruct E
| [ _ : context[match ?E with Some _ => _ | None => _ end] |- _ ] => destruct E
end; eauto; try solve [ exfalso; eauto ].
Lemma split_empty_fwd : forall h h1,
split h h1 $0
-> h = h1.
Proof.
splt.
Qed.
Lemma split_empty_fwd' : forall h h1,
split h $0 h1
-> h = h1.
Proof.
splt.
Qed.
Lemma split_empty_bwd : forall h,
split h h $0.
Proof.
splt.
Qed.
Lemma split_empty_bwd' : forall h,
split h $0 h.
Proof.
splt.
Qed.
Lemma disjoint_hemp : forall h,
disjoint h $0.
Proof.
splt.
Qed.
Lemma disjoint_hemp' : forall h,
disjoint $0 h.
Proof.
splt.
Qed.
Lemma disjoint_comm : forall h1 h2,
disjoint h1 h2
-> disjoint h2 h1.
Proof.
splt.
Qed.
Lemma split_comm : forall h h1 h2,
disjoint h1 h2
-> split h h1 h2
-> split h h2 h1.
Proof.
splt.
Qed.
Hint Immediate disjoint_comm split_comm : core.
Lemma split_assoc1 : forall h h1 h' h2 h3,
split h h1 h'
-> split h' h2 h3
-> split h (join h1 h2) h3.
Proof.
splt.
Qed.
Lemma split_assoc2' : forall h h1 h' h2 h3,
split h h1 h'
-> split h' h2 h3
-> disjoint h1 h'
-> disjoint h2 h3
-> split h h2 (join h3 h1).
Proof.
splt.
Qed.
Lemma split_assoc2 : forall h h1 h' h2 h3,
split h h' h1
-> split h' h2 h3
-> disjoint h' h1
-> disjoint h2 h3
-> split h h2 (join h3 h1).
Proof.
intros; eapply split_assoc2'; eauto.
Qed.
Lemma disjoint_assoc1 : forall h h1 h' h2 h3,
split h h1 h'
-> split h' h2 h3
-> disjoint h1 h'
-> disjoint h2 h3
-> disjoint (join h1 h2) h3.
Proof.
splt.
Qed.
Lemma disjoint_assoc2 : forall h h1 h' h2 h3,
split h h' h1
-> split h' h2 h3
-> disjoint h' h1
-> disjoint h2 h3
-> disjoint h2 (join h3 h1).
Proof.
splt.
Qed.
Lemma split_join : forall h1 h2,
split (join h1 h2) h1 h2.
Proof.
splt.
Qed.
Lemma split_disjoint : forall h h1 h2 h' h3,
split h h1 h'
-> split h' h2 h3
-> disjoint h1 h'
-> disjoint h2 h3
-> disjoint h1 h2.
Proof.
splt.
Qed.
Lemma disjoint_assoc3 : forall h h1 h2 h3,
disjoint h h2
-> split h h1 h3
-> disjoint h1 h3
-> disjoint h3 h2.
Proof.
splt.
Qed.
End splitting.
End M.
Export M.