-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathIndexContext.v
272 lines (230 loc) · 8.91 KB
/
IndexContext.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
Require Import Monad.
Require Import Monoid.
Require Import TypingContext.
Section IndexContext.
Set Implicit Arguments.
Variable A : Type.
(* An index map is a map from nats to A's encoded as a list of option A's;
index i maps to a if ls[i]=Some a *)
Definition IdxMap := list (option A).
Definition IdxCtx := option IdxMap.
Definition mergeOption (o1 o2 : option A) : option (option A) :=
match o1, o2 with
| _, None => Some o1
| None, _ => Some o2
| Some _, Some _ => None
end.
Fixpoint mergeIdxMap (i1 i2 : IdxMap) : option IdxMap :=
match i1, i2 with
| nil, _ => Some i2
| _, nil => Some i1
| o1 :: i1, o2 :: i2 => do o ← mergeOption o1 o2;
do i ← mergeIdxMap i1 i2;
Some (o :: i)
end.
Lemma mergeIdxMap_nil_r : forall i, mergeIdxMap i nil = Some i.
Proof.
destruct i; auto.
Defined.
Lemma mergeIdxMap_step : forall o1 o2 i1 i2,
mergeIdxMap (o1 :: i1) (o2 :: i2) = do o ← mergeOption o1 o2;
do i ← mergeIdxMap i1 i2;
Some (o :: i).
Proof.
intros; auto.
Defined.
Fixpoint is_empty_map (i : IdxMap) :=
match i with
| nil => true
| None :: i => is_empty_map i
| Some _ :: _ => false
end.
(* This will hold for all monads if you depend on functional extensionality *)
Lemma bind_option_eq : forall X Y (e : option X) (f f' : X -> option Y),
(forall x, f x = f' x) -> bind e f = bind e f'.
Proof.
intros. destruct e; auto.
simpl. auto.
Defined.
Arguments bind_option_eq {X Y} e.
(* This should really hold for all monads *)
Lemma bind_permut : forall {X Y Z} (ma : option X) (mb : option Y) (g : X -> Y -> option Z),
bind ma (fun x => bind mb (g x)) = bind mb (fun y => bind ma (fun x => g x y)).
Proof.
intros. destruct ma; destruct mb; auto.
Defined.
Lemma mergeOption_assoc : forall x y z,
do a ← mergeOption x y; mergeOption a z
= do b ← mergeOption y z; mergeOption x b.
Proof.
destruct x; destruct y; destruct z; auto.
Defined.
Lemma mergeOption_comm : forall x y, mergeOption x y = mergeOption y x.
Proof.
destruct x; destruct y; auto.
Defined.
Hint Resolve mergeIdxMap_nil_r.
Lemma IdxMap_assoc : forall a b c,
(do x ← mergeIdxMap b c; mergeIdxMap a x) = (do x ← mergeIdxMap a b; mergeIdxMap x c).
assert (H : forall X (x : X), Some x = return_ x) by reflexivity.
induction a as [ | x a]; intros;
[ simpl; destruct (mergeIdxMap b c); auto | ].
destruct b as [ | y b]; destruct c as [ | z c]; auto.
* repeat rewrite mergeIdxMap_nil_r.
rewrite H, <- bind_left_unit.
rewrite (bind_right_unit _ (mergeIdxMap (x :: a) (y :: b))) at 1.
apply bind_option_eq; auto.
* repeat rewrite mergeIdxMap_step.
repeat rewrite <- bind_associativity.
rewrite (bind_option_eq (mergeOption y z) _
(fun x0 => do i ← mergeIdxMap b c; mergeIdxMap (x :: a) (x0 :: i)));
[ | intros; rewrite <- bind_associativity; apply bind_option_eq; auto ].
rewrite (bind_option_eq (mergeOption x y) _
(fun x0 => do i ← mergeIdxMap a b; mergeIdxMap (x0 :: i) (z :: c)));
[ | intros; rewrite <- bind_associativity; apply bind_option_eq; auto ].
erewrite (bind_option_eq (mergeOption y z));
[ | intros; apply bind_option_eq; intros; apply mergeIdxMap_step ].
erewrite (bind_option_eq (mergeOption x y));
[ | intros; apply bind_option_eq; intros; apply mergeIdxMap_step ].
erewrite (bind_option_eq (mergeOption y z));
[ | intros; apply bind_permut].
erewrite (bind_option_eq (mergeOption x y));
[ | intros; apply bind_permut].
repeat rewrite bind_associativity.
rewrite mergeOption_assoc.
apply bind_option_eq; intros.
repeat rewrite bind_associativity.
rewrite IHa. reflexivity.
Defined.
Lemma IdxMap_comm : forall a b, mergeIdxMap a b = mergeIdxMap b a.
Proof.
induction a as [ | x a]; destruct b as [ | y b]; auto.
repeat rewrite mergeIdxMap_step.
rewrite mergeOption_comm.
apply bind_option_eq; intros o.
rewrite IHa. reflexivity.
Defined.
Fixpoint singleton' (x : nat) (a : A) :=
match x with
| O => Some a :: nil
| S x' => None :: singleton' x' a
end.
Lemma m'_cons_step : forall (o1 o2 : option A) Γ1 Γ2,
mergeIdxMap (o1 :: Γ1) (o2 :: Γ2) = match mergeIdxMap Γ1 Γ2, o1, o2 with
| Some Γ, _, None => Some (o1 :: Γ)
| Some Γ, None, _ => Some (o2 :: Γ)
| _, _, _ => None
end.
Proof.
simpl. intros. destruct o1; destruct o2; auto. simpl. destruct (mergeIdxMap Γ1 Γ2); auto.
Qed.
Lemma is_Some_m'_None_None : forall Γ1 Γ2,
is_Some (mergeIdxMap (None :: Γ1) (None :: Γ2)) = is_Some (mergeIdxMap Γ1 Γ2).
Admitted.
Lemma is_Some_m'_Some_None : forall a Γ1 Γ2,
is_Some (mergeIdxMap (Some a :: Γ1) (None :: Γ2)) = is_Some (mergeIdxMap Γ1 Γ2).
Admitted.
Lemma is_Some_m'_None_Some : forall a Γ1 Γ2,
is_Some (mergeIdxMap (None :: Γ1) (Some a :: Γ2)) = is_Some (mergeIdxMap Γ1 Γ2).
Admitted.
Lemma is_Some_m'_Some_Some : forall a1 a2 Γ1 Γ2,
is_Some (mergeIdxMap (Some a1 :: Γ1) (Some a2 :: Γ2)) = false.
Admitted.
End IndexContext.
Hint Resolve mergeIdxMap_nil_r.
About singleton.
Instance PMonoid_IdxMap A : PPCM (IdxMap A) :=
{ one' := nil; m' := @mergeIdxMap A}.
Instance PMonoid_IdxMap_Laws A : PPCM_Laws (IdxMap A).
Proof.
split.
- simpl; auto.
- apply IdxMap_assoc.
- apply IdxMap_comm.
Defined.
Instance Monoid_IdxMap_Laws A : PCM_Laws (IdxCtx A) :=
PPCM_to_PCM_Laws (IdxMap A).
(* WHY IS THIS NECESSARY? (see examples at end of file *)
Hint Resolve Monoid_IdxMap_Laws.
Instance PTypingContext_IdxMap A : PTypingContext nat A (IdxMap A) :=
{ singleton' := @singleton' A
}.
Ltac unfold_m' :=
repeat match goal with
| [ |- context[m' ?Γ1 ?Γ2] ] => replace (m' Γ1 Γ2) with (mergeIdxMap Γ1 Γ2) by auto
end.
Instance PTypingContext_IdxMap_Laws A : PTypingContext_Laws nat A (IdxMap A).
Proof.
split.
- unfold IdxMap.
induction Γ1 as [ | o1 Γ1]; destruct Γ2 as [ | o2 Γ2], Γ3 as [ | o3 Γ3]; auto.
* rewrite Bool.andb_true_r. auto.
* repeat rewrite Bool.andb_true_r. simpl.
destruct (mergeOption o1 o2); auto.
destruct (mergeIdxMap Γ1 Γ2); auto.
* unfold_m'.
remember (mergeIdxMap (o1 :: Γ1) (o2 :: Γ2)) as Γ eqn:HeqΓ.
destruct Γ as [ Γ | ]; [ | auto].
replace (is_Some (Some Γ)) with true by auto.
rewrite Bool.andb_true_l.
replace (Some Γ) with (return_ Γ : IdxCtx A) by auto.
rewrite <- bind_left_unit.
destruct (mergeIdxMap Γ1 Γ2) as [Γ' | ] eqn:HeqΓ';
[ | rewrite m'_cons_step in HeqΓ; rewrite HeqΓ' in HeqΓ; inversion HeqΓ ].
assert (IH' : is_Some (m' Γ' Γ3) = is_Some (m' Γ1 Γ3) && is_Some (m' Γ2 Γ3)).
{ specialize (IHΓ1 Γ2 Γ3).
simpl in IHΓ1.
rewrite HeqΓ' in IHΓ1.
apply IHΓ1.
}
destruct o1 as [a1 | ]; destruct o2 as [a2 | ]; try (inversion HeqΓ; fail);
simpl in HeqΓ, HeqΓ'; rewrite HeqΓ' in HeqΓ; inversion HeqΓ;
unfold_m'.
+ destruct o3; auto.
(* rewrite is_Some_m'_Some_None.*)
(* WHAT IS GOING ON? CAN'T APPLY MY LEMMAS *)
simpl in *.
destruct (mergeIdxMap Γ' Γ3), (mergeIdxMap Γ1 Γ3), (mergeIdxMap Γ2 Γ3);
auto.
+ destruct o3.
++ simpl. rewrite Bool.andb_false_r. auto.
++ simpl in *.
destruct (mergeIdxMap Γ' Γ3), (mergeIdxMap Γ1 Γ3), (mergeIdxMap Γ2 Γ3);
auto.
+ simpl in *.
destruct o3;
destruct (mergeIdxMap Γ' Γ3), (mergeIdxMap Γ1 Γ3), (mergeIdxMap Γ2 Γ3);
auto.
- intros.
generalize dependent y. induction x, y; intros; split; intros H; simpl in *; auto; try (inversion H; fail).
* rewrite mergeIdxMap_nil_r in H. inversion H.
* destruct (mergeIdxMap (singleton' x a) (singleton' y b)) eqn:Hxy.
+ inversion H.
+ apply IHx in Hxy. auto.
* inversion H.
destruct (IHx y) as [_ IHx'].
subst.
rewrite IHx'; auto.
Qed.
Instance TypingContext_IdxMap A : TypingContext_Laws nat A (IdxCtx A) :=
PTypingContext_to_TypingContext_Laws nat A (IdxMap A).
Hint Resolve TypingContext_IdxMap.
(* Now option IdxCtx should be a typing context *)
Section Tests.
Variable A : Type.
Lemma singleton_not_empty : forall x a, is_valid (singleton x a : IdxCtx A).
Proof.
intros. eapply singleton_is_valid; auto.
Defined.
Example test : forall x y a b,
singleton x a ∙ singleton y b = singleton y b ∙ singleton x a ∙ (⊤ : IdxCtx A).
Proof.
intros. monoid.
Defined.
Example test' : forall x y a b, x <> y ->
singleton x a ⊎ singleton y b == singleton y b ∙ singleton x a ∙ (⊤ : IdxCtx A).
Proof.
intros.
solve_ctx.
Defined.
End Tests.