Python SDK for ImageKit implements the new APIs and interface for different file operations.
ImageKit is complete media storage, optimization, and transformation solution that comes with an image and video CDN. It can be integrated with your existing infrastructure - storage like AWS S3, web servers, your CDN, and custom domain names, allowing you to deliver optimized images in minutes with minimal code changes.
Supported Python Versions: >=3.6
Table of contents -
Go to your terminal and type the following command.
pip install imagekitio
from imagekitio import ImageKit
imagekit = ImageKit(
private_key='your_private_key',
public_key='your_public_key',
url_endpoint='your_url_endpoint'
)
This document presents a list of changes that break the existing functionality of previous versions. We try to minimize these disruptions, but they are sometimes unavoidable, especially in significant updates. Therefore, versions are marked semantically and tagged as major upgrades whenever such breaking changes occur.
Changes from 3.2.0 -> 4.0.0
are listed below
- Overlay syntax update
- In version 4.0.0, we've removed the old overlay syntax parameters for transformations, such as
oi
,ot
,obg
, and more. These parameters are deprecated and will start returning errors when used in URLs. Please migrate to the new layers syntax that supports overlay nesting, provides better positional control, and allows more transformations at the layer level. You can start with examples to learn quickly. - You can migrate to the new layers syntax using the
raw
transformation parameter.
Changes from 2.2.8 -> 3.0.0
are listed below
- Throw an Error:
What changed
- Before the upgrade, an
error
dict was coming in the return object of any function call. Now, SDK throws an exception in case of an error.
Who is affected?
- This affects any development in your software that calls APIs from ImageKit IO and handles errors based on what's returned.
How should I update my code?
- To avoid failures in an application, you could handle errors as documented here
You can use this Python SDK for three different kinds of methods:
1. Using Image path and endpoint (hostname)
This method allows you to create a URL using the relative file path where the image exists and the URL endpoint(url_endpoint) you want to use to access the image. You can refer to the documentation here to read more about URL endpoints in ImageKit and the section about image origins to understand about paths with different kinds of origins.
The file can be an image, video, or any other static file supported by ImageKit.
imagekit_url = imagekit.url({
"path": "/default-image.jpg",
"url_endpoint": "https://ik.imagekit.io/your_imagekit_id/endpoint/",
"transformation": [{
"height": "300",
"width": "400",
"raw": "ar-4-3,q-40"
}],
})
Sample Result URL -
https://ik.imagekit.io/your_imagekit_id/endpoint/tr:h-300,w-400,ar-4-3,q-40/default-image.jpg
2. Using full image URL
This method allows you to add transformation parameters to an absolute URL using the src
parameter. This method should be
used if you have the complete image URL stored in your database.
image_url = imagekit.url({
"src": "https://ik.imagekit.io/your_imagekit_id/endpoint/default-image.jpg",
"transformation": [{
"height": "300",
"width": "400",
"raw": "ar-4-3,q-40"
}]
})
Sample Result URL -
https://ik.imagekit.io/your_imagekit_id/endpoint/default-image.jpg?tr=h-300%2Cw-400%2Car-4-3%2Cq-40
The .url()
method accepts the following parameters.
Option | Description |
---|---|
url_endpoint | Optional. The prepended base URL before the path of the image. If not specified, the URL Endpoint specified during SDK initialization gets used. For example, https://ik.imagekit.io/your_imagekit_id/endpoint/ |
path | Conditional. A path at which the image exists. For example, /path/to/image.jpg . Specify a path or src parameter for URL generation. |
src | Conditional. Complete URL of an image already mapped to ImageKit. For example, https://ik.imagekit.io/your_imagekit_id/endpoint/path/to/image.jpg . Specify a path or src parameter for URL generation. |
transformation | Optional. Specify an array of objects with name and the value in key-value pair to apply transformation params in the URL. Append different steps of a chained transformation as different objects of the array. This document includes a complete list of supported transformations in the SDK with some examples. If one uses an unspecified transformation name, it gets applied as it is in the URL. |
transformation_position | Optional. The default value is path , which places the transformation string as a path parameter in the URL. One can also specify it as a query, which adds the transformation string as the query parameter tr in the URL. Suppose one uses the src parameter to create the URL. In that case, the transformation string is always a query parameter. |
query_parameters | Optional. These are the other query parameters that one wants to add to the final URL. These can be any query parameters and are not necessarily related to ImageKit. Especially useful if one wants to add some versioning parameter to their URLs. |
signed | Optional. Boolean. The default is false . If set to true , the SDK generates a signed image URL adding the image signature to the image URL. One can only use this if they create the URL with the url_endpoint and path parameters, not the src parameter. |
expire_seconds | Optional. Integer. Used along with the signed parameter to specify the time in seconds from now when the URL should expire. If specified, the URL contains the expiry timestamp, and the image signature is modified accordingly. |
1. Chained Transformations as a query parameter
image_url = imagekit.url({
"path": "/default-image.jpg",
"url_endpoint": "https://ik.imagekit.io/your_imagekit_id/endpoint/",
"transformation": [
{
"height": "300",
"width": "400"
},
{
"rotation": 90
}
],
"transformation_position": "query"
})
Sample Result URL -
https://ik.imagekit.io/your_imagekit_id/endpoint/default-image.jpg?tr=h-300%2Cw-400%3Art-90
2. Sharpening, contrast transform and progressive JPG image
Add transformations like Sharpening to the URL with or without any other value. To use such transforms without specifying a value, set it as "-" in the transformation object. Otherwise, use the value that one wants to add to this transformation.
image_url = imagekit.url({
"src": "https://ik.imagekit.io/your_imagekit_id/endpoint/default-image.jpg",
"transformation": [{
"format": "jpg",
"progressive": "true",
"effect_sharpen": "-",
"effect_contrast": "1"
}]
})
Sample Result URL -
# Note that because the `src` parameter is in effect, the transformation string gets added as a query parameter `tr`
https://ik.imagekit.io/your_imagekit_id/endpoint/default-image.jpg?tr=f-jpg%2Cpr-true%2Ce-sharpen%2Ce-contrast-1
3. Signed URL that expires in 300 seconds with the default URL endpoint and other query parameters
image_url = imagekit.url({
"path": "/default-image.jpg",
"query_parameters": {
"p1": "123",
"p2": "345"
},
"transformation": [{
"height": "300",
"width": "400"
}],
"signed": True,
"expire_seconds": 300
})
Sample Result URL -
https://ik.imagekit.io/your_imagekit_id/tr:h-300,w-400/default-image.jpg?p1=123&p2=345&ik-t=1658899345&ik-s=8f03aca28432d4e87f697a48143efb4497bbed9e
4. Adding overlays
ImageKit.io enables you to apply overlays to images and videos using the raw parameter with the concept of layers. The raw parameter facilitates incorporating transformations directly in the URL. A layer is a distinct type of transformation that allows you to define an asset to serve as an overlay, along with its positioning and additional transformations.
Text as overlays
You can add any text string over a base video or image using a text layer (l-text).
For example:
image_url = imagekit.url({
"path": "/default-image",
"url_endpoint": "https://ik.imagekit.io/your_imagekit_id/endpoint/",
"transformation": [{
"height": "300",
"width": "400",
"raw": "l-text,i-Imagekit,fs-50,l-end"
}],
})
Sample Result URL
https://ik.imagekit.io/your_imagekit_id/tr:h-300,w-400,l-text,i-Imagekit,fs-50,l-end/default-image.jpg
Image as overlays
You can add an image over a base video or image using an image layer (l-image).
For example:
image_url = imagekit.url({
"path": "/default-image",
"url_endpoint": "https://ik.imagekit.io/your_imagekit_id/endpoint/",
"transformation": [{
"height": "300",
"width": "400",
"raw": "l-image,i-default-image.jpg,w-100,b-10_CDDC39,l-end"
}],
})
Sample Result URL
https://ik.imagekit.io/your_imagekit_id/tr:h-300,w-400,l-image,i-default-image.jpg,w-100,b-10_CDDC39,l-end/default-image.jpg
Solid color blocks as overlays
You can add solid color blocks over a base video or image using an image layer (l-image).
For example:
image_url = imagekit.url({
"path": "/img/sample-video",
"url_endpoint": "https://ik.imagekit.io/your_imagekit_id/endpoint/",
"transformation": [{
"height": "300",
"width": "400",
"raw": "l-image,i-ik_canvas,bg-FF0000,w-300,h-100,l-end"
}],
})
Sample Result URL
https://ik.imagekit.io/your_imagekit_id/tr:h-300,w-400,l-image,i-ik_canvas,bg-FF0000,w-300,h-100,l-end/img/sample-video.mp4
5. Arithmetic expressions in transformations
ImageKit allows use of arithmetic expressions in certain dimension and position-related parameters, making media transformations more flexible and dynamic.
For example:
image_url = imagekit.url({
"path": "/default-image.jpg",
"url_endpoint": "https://ik.imagekit.io/your_imagekit_id/endpoint/",
"transformation": [{
"height": "ih_div_2",
"width": "iw_div_4",
"border": "cw_mul_0.05_yellow"
}],
})
Sample Result URL
https://ik.imagekit.io/your_imagekit_id/default-image.jpg?tr=w-iw_div_4,h-ih_div_2,b-cw_mul_0.05_yellow
List of transformations
The complete list of transformations supported and their usage in ImageKit is available here.
The SDK gives a name to each transformation parameter, making the code simpler, more straightforward, and readable. If a transformation is supported in ImageKit, though it cannot be found in the table below, then use the transformation code from ImageKit docs as the name when using the URL
function.
If you want to generate transformations in your application and add them to the URL as it is, use the raw parameter.
Supported Transformation Name | Translates to parameter |
---|---|
height | h |
width | w |
aspect_ratio | ar |
quality | q |
crop | c |
crop_mode | cm |
x | x |
y | y |
focus | fo |
format | f |
radius | r |
background | bg |
border | b |
rotation | rt |
blur | bl |
named | n |
progressive | pr |
lossless | lo |
trim | t |
metadata | md |
color_profile | cp |
default_image | di |
dpr | dpr |
effect_sharpen | e-sharpen |
effect_usm | e-usm |
effect_contrast | e-contrast |
effect_gray | e-grayscale |
effect_shadow | e-shadow |
effect_gradient | e-gradient |
original | orig |
raw | replaced by the parameter value |
The SDK provides a simple interface using the .upload_file()
method to upload files to the ImageKit Media library. It
accepts all the parameters supported by
the ImageKit Upload API.
The upload_file()
method requires at least the file
as (URL/Base64/Binary) and the file_name
parameter to upload a
file. The method returns a dict data in case of success, or it will throw a custom exception in case of failure.
Use the options
parameter to pass other parameters supported by
the ImageKit Upload API. Use the same
parameter name as specified in the upload API documentation.
Simple usage
from imagekitio.models.UploadFileRequestOptions import UploadFileRequestOptions
extensions = [
{
'name': 'remove-bg',
'options': {
'add_shadow': True,
'bg_color': 'pink'
}
},
{
'name': 'google-auto-tagging',
'minConfidence': 80,
'maxTags': 10
}
]
transformation = {
'pre': 'l-text,i-Imagekit,fs-50,l-end',
'post': [
{
'type': 'transformation',
'value': 'w-100'
}
]
}
options = UploadFileRequestOptions(
use_unique_file_name=False,
tags=['abc', 'def'],
folder='/testing-python-folder/',
is_private_file=False,
custom_coordinates='10,10,20,20',
response_fields=['tags', 'custom_coordinates', 'is_private_file',
'embedded_metadata', 'custom_metadata'],
extensions=extensions,
webhook_url='https://webhook.site/c78d617f-33bc-40d9-9e61-608999721e2e',
overwrite_file=True,
overwrite_ai_tags=False,
overwrite_tags=False,
overwrite_custom_metadata=True,
custom_metadata={'testss': 12},
transformation=transformation,
checks="'request.folder' : '/testing-python-folder'", # To run server side checks before uploading files. Notice the quotes around request.folder and /testing-python-folder.
is_published=True
)
result = imagekit.upload_file(file='<url|base_64|binary>', # required
file_name='my_file_name.jpg', # required
options=options)
# Final Result
print(result)
# Raw Response
print(result.response_metadata.raw)
# print that uploaded file's ID
print(result.file_id)
If the upload succeeds, the result
will be the UploadFileResult
class.
If the upload fails, the custom exception will be thrown with:
response_help
for any kind of helpresponse_metadata
withraw
,http_status_code
andheaders
message
can be called to get the error message received from ImageKit's servers.
The SDK provides a simple interface for all
the media APIs mentioned here
to manage your files. This also returns result
.
1. List & Search Files
Accepts an object specifying the parameters used to list and search files. All parameters specified in the documentation here can be passed with the correct values to get the results.
Filter out the files by specifying the parameters.
from imagekitio.models.ListAndSearchFileRequestOptions import ListAndSearchFileRequestOptions
options = ListAndSearchFileRequestOptions(
type='file',
sort='ASC_CREATED',
path='/',
file_type='all',
limit=5,
skip=0,
tags='Software, Developer, Engineer',
)
result = imagekit.list_files(options=options)
# Final Result
print(result)
# Raw Response
print(result.response_metadata.raw)
# print the first file's ID
print(result.list[0].file_id)
In addition, you can fine-tune your query by specifying various filters by generating a query string in a Lucene-like syntax and providing this generated string as the value of the search_query
.
from imagekitio.models.ListAndSearchFileRequestOptions import ListAndSearchFileRequestOptions
options = ListAndSearchFileRequestOptions(
search_query="createdAt >= '2d' OR size < '2mb' OR format='png'",
)
result = imagekit.list_files(options=options)
# Final Result
print(result)
# Raw Response
print(result.response_metadata.raw)
# print the first file's ID
print(result.list[0].file_id)
Detailed documentation can be found here for advance search queries.
2. Get File Details
Accepts the file ID and fetches the details as per the API documentation here
file_id = "your_file_id"
result = imagekit.get_file_details(file_id=file_id) # file_id required
# Final Result
print(result)
# Raw Response
print(result.response_metadata.raw)
# print that file's id
print(result.file_id)
3. Get File Versions
Accepts the file ID and fetches the details as per the API documentation here
file_id = "your_file_id"
result = imagekit.get_file_versions(file_id=file_id) # file_id required
# Final Result
print(result)
# Raw Response
print(result.response_metadata.raw)
# print that file's version id
print(result.list[0].version_info.id)
4. Get File Version details
Accepts the file_id
and version_id
and fetches the details as per
the API documentation here
result = imagekit.get_file_version_details(
file_id='file_id',
version_id='version_id'
)
# Final Result
print(result)
# Raw Response
print(result.response_metadata.raw)
# print that file's id
print(result.file_id)
# print that file's version id
print(result.version_info.id)
5. Update File Details
Accepts all the parameters as per
the API documentation here.
The first argument to the update_file_details()
method is the file ID, and a second argument is an object with the
parameters to be
updated.
from imagekitio.models.UpdateFileRequestOptions import UpdateFileRequestOptions
extensions = [
{
'name': 'remove-bg',
'options': {
'add_shadow': True,
'bg_color': 'red'
}
},
{
'name': 'google-auto-tagging',
'minConfidence': 80,
'maxTags': 10
}
]
options = UpdateFileRequestOptions(
remove_ai_tags=['remove-ai-tag-1', 'remove-ai-tag-2'],
webhook_url='url',
extensions=extensions,
tags=['tag-1', 'tag-2'],
custom_coordinates='10,10,100,100',
custom_metadata={'test': 11},
)
result = imagekit.update_file_details(file_id='62cfd39819ca454d82a07182'
, options=options) # required
# Final Result
print(result)
# Raw Response
print(result.response_metadata.raw)
# print that file's id
print(result.file_id)
Update publish status
If publish
is included in the update options, no other parameters are allowed. If any are present, an error will be returned: Your request cannot contain any other parameters when publish is present
.
from imagekitio.models.UpdateFileRequestOptions import UpdateFileRequestOptions
options = UpdateFileRequestOptions(
publish={
"isPublished": True,
"includeFileVersions": True
}
)
result = imagekit.update_file_details(file_id='62cfd39819ca454d82a07182'
, options=options) # required
# Final Result
print(result)
# Raw Response
print(result.response_metadata.raw)
# print that file's id
print(result.file_id)
6. Add tags
Accepts a list of file_ids
and tags
as a parameter to be used to add tags. All parameters specified in
the API documentation here can be passed to
the .add_tags()
functions to get the results.
result = imagekit.add_tags(file_ids=['file-id-1', 'file-id-2'], tags=['add-tag-1', 'add-tag-2'])
# Final Result
print(result)
# Raw Response
print(result.response_metadata.raw)
# list successfully updated file ids
print(result.successfully_updated_file_ids)
# print the first file's id
print(result.successfully_updated_file_ids[0])
7. Remove tags
Accepts a list of file_ids
and tags
as a parameter to be used to remove tags. All parameters specified in
the API documentation here can be passed to
the .remove_tags()
functions to get the results.
result = imagekit.remove_tags(file_ids=['file-id-1', 'file-id-2'], tags=['remove-tag-1', 'remove-tag-2'])
# Final Result
print(result)
# Raw Response
print(result.response_metadata.raw)
# list successfully updated file ids
print(result.successfully_updated_file_ids)
# print the first file's id
print(result.successfully_updated_file_ids[0])
8. Remove AI tags
Accepts a list of file_ids
and ai_tags
as a parameter to remove AI tags. All parameters specified in
the API documentation here can be passed to
the .remove_ai_tags()
functions to get the results.
result = imagekit.remove_ai_tags(file_ids=['file-id-1', 'file-id-2'], ai_tags=['remove-ai-tag-1', 'remove-ai-tag-2'])
# Final Result
print(result)
# Raw Response
print(result.response_metadata.raw)
# list successfully updated file ids
print(result.successfully_updated_file_ids)
# print the first file's id
print(result.successfully_updated_file_ids[0])
9. Delete File
Delete a file according to the API documentation here. It accepts the file ID of the File that has to be deleted.
file_id = "file_id"
result = imagekit.delete_file(file_id=file_id)
# Final Result
print(result)
# Raw Response
print(result.response_metadata.raw)
10. Delete FileVersion
Delete a file version as per
the API documentation here.
The method accepts the file_id
and particular version id of the file that has to be deleted.
result = imagekit.delete_file_version(file_id="file_id", version_id="version_id")
# Final Result
print(result)
# Raw Response
print(result.response_metadata.raw)
11. Bulk File Delete by IDs
Delete a file as per the API documentation here. The method accepts a list of file IDs that have to be deleted.
result = imagekit.bulk_file_delete(file_ids=["file_id1", "file_id2"])
# Final Result
print(result)
# Raw Response
print(result.response_metadata.raw)
# list successfully deleted file ids
print(result.successfully_deleted_file_ids)
# print the first file's id
print(result.successfully_deleted_file_ids[0])
12. Copy file
Copy a file according to the API documentation here.
The method accepts source_file_path
, destination_path
, and include_file_versions
of the file that has to be copied.
from imagekitio.models.CopyFileRequestOptions import CopyFileRequestOptions
options = \
CopyFileRequestOptions(source_file_path='/source_file_path.jpg',
destination_path='/destination_path',
include_file_versions=True)
result = imagekit.copy_file(options=options)
# Final Result
print(result)
# Raw Response
print(result.response_metadata.raw)
13. Move File
Move a file as per the API documentation here.
The method accepts source_file_path
and destination_path
of the file that has to be moved.
from imagekitio.models.MoveFileRequestOptions import MoveFileRequestOptions
options = \
MoveFileRequestOptions(source_file_path='/source_file_path.jpg',
destination_path='/destination_path')
result = imagekit.move_file(options=options)
# Final Result
print(result)
# Raw Response
print(result.response_metadata.raw)
14. Rename File
Rename a file per the API documentation here.
The method accepts the file_path
, new_file_name
, and purge_cache
boolean that has to be renamed.
from imagekitio.models.RenameFileRequestOptions import RenameFileRequestOptions
options = RenameFileRequestOptions(file_path='/file_path.jpg',
new_file_name='new_file_name.jpg',
purge_cache=True)
result = imagekit.rename_file(options=options)
# Final Result
print(result)
# Raw Response
print(result.response_metadata.raw)
# print the purge request id
print(result.purge_request_id)
15. Restore file Version
Restore a file as per
the API documentation here.
The method accepts the file_id
and version_id
of the file that has to be restored.
result = imagekit.restore_file_version(file_id="file_id", version_id="version_id")
# Final Result
print(result)
# Raw Response
print(result.response_metadata.raw)
# print that file's id
print(result.file_id)
16. Create Folder
Create a folder per the API documentation here.
The method accepts folder_name
and parent_folder_path
as options that must be created.
from imagekitio.models.CreateFolderRequestOptions import CreateFolderRequestOptions
options = CreateFolderRequestOptions(folder_name='test',
parent_folder_path='/')
result = imagekit.create_folder(options=options)
# Final Result
print(result)
# Raw Response
print(result.response_metadata.raw)
17. Delete Folder
Delete a folder as per the API documentation here.
The method accepts folder_path
as an option that must be deleted.
from imagekitio.models.DeleteFolderRequestOptions import DeleteFolderRequestOptions
options = DeleteFolderRequestOptions(folder_path='/test/demo')
result = imagekit.delete_folder(options=options)
# Final Result
print(result)
# Raw Response
print(result.response_metadata.raw)
18. Copy Folder
Copy a folder as per the API documentation here.
The method accepts the source_folder_path
, destination_path
, and include_file_versions
boolean as options that
have to be copied.
from imagekitio.models.CopyFolderRequestOptions import CopyFolderRequestOptions
options = \
CopyFolderRequestOptions(source_folder_path='/source_folder_path',
destination_path='/destination/path',
include_file_versions=True)
result = imagekit.copy_folder(options=options)
# Final Result
print(result)
# Raw Response
print(result.response_metadata.raw)
# print the job's id
print(result.job_id)
19. Move Folder
Move a folder as per the API documentation here.
The method accepts the source_folder_path
and destination_path
of a folder as options that must be moved.
from imagekitio.models.MoveFolderRequestOptions import MoveFolderRequestOptions
options = \
MoveFolderRequestOptions(source_folder_path='/source_folder_path',
destination_path='/destination_path')
result = imagekit.move_folder(options=options)
# Final Result
print(result)
# Raw Response
print(result.response_metadata.raw)
# print the job's id
print(result.job_id)
20. Get Bulk Job Status
Accepts the job_id
to get bulk job status as per
the API documentation here.
The method takes only jobId.
result = imagekit.get_bulk_job_status(job_id="job_id")
# Final Result
print(result)
# Raw Response
print(result.response_metadata.raw)
# print the job's id
print(result.job_id)
# print the status
print(result.status)
21. Purge Cache
Programmatically issue an explicit cache request as per the API documentation here. Accepts the full URL of the File for which the cache has to be cleared.
result = imagekit.purge_file_cache(file_url="full_url_of_file")
# Final Result
print(result)
# Raw Response
print(result.response_metadata.raw)
# print the purge file cache request id
print(result.request_id)
22. Purge Cache Status
Get the purge cache request status using the cache_request_id
returned when a purge cache request gets submitted as per the
API documentation here
result = imagekit.get_purge_file_cache_status(purge_cache_id="cache_request_id")
# Final Result
print(result)
# Raw Response
print(result.response_metadata.raw)
# print the purge file cache status
print(result.status)
23. Get File Metadata
Accepts the file_id
and fetches the metadata as per
the API documentation here
result = imagekit.get_file_metadata(file_id="file_id")
# Final Result
print(result)
# Raw Response
print(result.response_metadata.raw)
# print the file metadata fields
print(result.width)
print(result.exif.image.x_resolution)
24. Get File Metadata from remote URL
Accepts the remote_file_url
and fetches the metadata as per
the API documentation here
result = imagekit.get_remote_file_url_metadata(remote_file_url="remote_file_url")
# Final Result
print(result)
# Raw Response
print(result.response_metadata.raw)
# print the file metadata fields
print(result.width)
print(result.exif.image.x_resolution)
25. Create CustomMetaDataFields
Accepts an option specifying the parameters used to create custom metadata fields. All parameters specified in the API documentation here can be passed as it is with the correct values to get the results.
Check for the allowed values in the schema.
Example:
# Example for the type number
from imagekitio.models.CreateCustomMetadataFieldsRequestOptions import CreateCustomMetadataFieldsRequestOptions
from imagekitio.models.CustomMetadataFieldsSchema import CustomMetadataFieldsSchema
from imagekitio.models.CustomMetaDataTypeEnum import CustomMetaDataTypeEnum
schema = CustomMetadataFieldsSchema(type=CustomMetaDataTypeEnum.Number,
min_value=100,
max_value=200)
options = CreateCustomMetadataFieldsRequestOptions(name='test',
label='test',
schema=schema)
result = imagekit.create_custom_metadata_fields(options=options)
# Final Result
print(result)
# Raw Response
print(result.response_metadata.raw)
# print the id of created custom metadata fields
print(result.id)
# print the schema's type of created custom metadata fields
print(result.schema.type)
# MultiSelect type Example
from imagekitio.models.CreateCustomMetadataFieldsRequestOptions import CreateCustomMetadataFieldsRequestOptions
from imagekitio.models.CustomMetadataFieldsSchema import CustomMetadataFieldsSchema
from imagekitio.models.CustomMetaDataTypeEnum import CustomMetaDataTypeEnum
schema = \
CustomMetadataFieldsSchema(type=CustomMetaDataTypeEnum.MultiSelect,
is_value_required=True,
default_value=['small', 30, True],
select_options=[
'small',
'medium',
'large',
30,
40,
True,
])
options = \
CreateCustomMetadataFieldsRequestOptions(name='test-MultiSelect',
label='test-MultiSelect', schema=schema)
result = imagekit.create_custom_metadata_fields(options=options)
# Final Result
print(result)
# Raw Response
print(result.response_metadata.raw)
# print the name of created custom metadata fields
print(result.name)
# print the schema's select options of created custom metadata fields
print(result.schema.select_options)
# Date type Example
from imagekitio.models.CreateCustomMetadataFieldsRequestOptions import CreateCustomMetadataFieldsRequestOptions
from imagekitio.models.CustomMetadataFieldsSchema import CustomMetadataFieldsSchema
from imagekitio.models.CustomMetaDataTypeEnum import CustomMetaDataTypeEnum
schema = CustomMetadataFieldsSchema(type=CustomMetaDataTypeEnum.Date,
min_value='2022-11-29T10:11:10+00:00',
max_value='2022-11-30T10:11:10+00:00')
options = CreateCustomMetadataFieldsRequestOptions(name='test-date',
label='test-date',
schema=schema)
result = imagekit.create_custom_metadata_fields(options=options)
# Final Result
print(result)
# Raw Response
print(result.response_metadata.raw)
# print the label of created custom metadata fields
print(result.label)
# print the schema's min value of created custom metadata fields
print(result.schema.min_value)
26. Get CustomMetaDataFields
Accepts the include_deleted
boolean as the initial parameter and fetches the metadata as per
the API documentation here
.
result = imagekit.get_custom_metadata_fields() # in this case, it will consider includeDeleted as a False
# Final Result
print(result)
# Raw Response
print(result.response_metadata.raw)
# print the first customMetadataField's id
print(result.list[0].id)
# print the first customMetadataField schema's type
print(result.list[0].schema.type)
result = imagekit.get_custom_metadata_fields(include_deleted=True)
# Final Result
print(result)
# Raw Response
print(result.response_metadata.raw)
# print the first customMetadataField's name
print(result.list[0].name)
# print the first customMetadataField schema's default value
print(result.list[0].schema.default_value)
27. Update CustomMetaDataFields
Accepts a field_id
and options for specifying the parameters to be used to edit custom metadata fields
as per
the API documentation here
.
from imagekitio.models.CustomMetadataFieldsSchema import CustomMetadataFieldsSchema
from imagekitio.models.UpdateCustomMetadataFieldsRequestOptions import UpdateCustomMetadataFieldsRequestOptions
schema = CustomMetadataFieldsSchema(min_value=100, max_value=200)
options = UpdateCustomMetadataFieldsRequestOptions(
label='test-update',
schema=schema
)
result = imagekit.update_custom_metadata_fields(
field_id='id_of_custom_metadata_field',
options=options
)
# Final Result
print(result)
# Raw Response
print(result.response_metadata.raw)
# print the label of updated custom metadata fields
print(result.label)
# print the schema's min value of updated custom metadata fields
print(result.schema.min_value)
28. Delete CustomMetaDataFields
Accepts the id to delete the custom metadata fields as per the API documentation here .
result = imagekit.delete_custom_metadata_field(field_id="id_of_custom_metadata_field")
# Final Result
print(result)
# Raw Response
print(result.response_metadata.raw)
We have included the following commonly used utility functions in this package.
Authentication parameter generation
Suppose one wants to implement client-side file upload. In that case, one will need a token, expiry timestamp, and a valid signature for that upload. The SDK provides a simple method that one can use in their code to generate these authentication parameters.
Note: Any client-side code should never expose The Private API Key. One must always generate these authentications parameters on the server-side
authentication
authentication_parameters = imagekit.get_authentication_parameters(token, expire)
Returns
{
"token": "unique_token",
"expire": "valid_expiry_timestamp",
"signature": "generated_signature"
}
Both the token
and expire
parameters are optional. If not specified, the SDK uses the UUID to generate a random token and internally generates a valid expiry timestamp. The token
and expire
used to generate signature
is part of a response returned by the server.
Distance calculation between two pHash
values
Perceptual hashing allows you to construct a has value that uniquely identifies an input image based on the contents
of an image. imagekit.io metadata API returns the pHash
value of an image in the response. You can use this value
to find a duplicate or similar image
by calculating the distance between the two images.
This SDK exposes the phash_distance
function to calculate the distance between two pHash
values. It accepts two pHash
hexadecimal
strings and returns a numeric value indicative of the difference between the two images.
def calculate_distance():
# fetch metadata of two uploaded image files
...
# extract pHash strings from both: say 'first_hash' and 'second_hash'
...
# calculate the distance between them:
distance = imagekit.phash_distance(first_hash, second_hash)
return distance
Distance calculation examples
imagekit.phash_distance('f06830ca9f1e3e90', 'f06830ca9f1e3e90')
# output: 0 (same image)
imagekit.phash_distance('2d5ad3936d2e015b', '2d6ed293db36a4fb')
# output: 17 (similar images)
imagekit.phash_distance('a4a65595ac94518b', '7838873e791f8400')
# output: 37 (dissimilar images)
HTTP response metadata of Internal API
HTTP response metadata of the internal API call can be accessed using the _response_metadata on the Result object. Example:
result = imagekit.upload_file(
file="<url|base_64|binary>",
file_name="my_file_name.jpg",
)
# Final Result
print(result)
print(result.response_metadata.raw)
print(result.response_metadata.http_status_code)
print(result.response_metadata.headers)
To run sample
code go to the code samples here are hosted on GitHub - https://github.com/imagekit-samples/quickstart/tree/master/python and run.
python sample.py
Catch and respond to invalid data, internal problems, and more.
ImageKit Python SDK raises exceptions for many reasons, such as not found, invalid parameters, authentication, and internal server errors. Therefore, we recommend writing code that gracefully handles all possible API exceptions.
from imagekitio.exceptions.BadRequestException import BadRequestException
from imagekitio.exceptions.UnauthorizedException import UnauthorizedException
from imagekitio.exceptions.ForbiddenException import ForbiddenException
from imagekitio.exceptions.TooManyRequestsException import TooManyRequestsException
from imagekitio.exceptions.InternalServerException import InternalServerException
from imagekitio.exceptions.PartialSuccessException import PartialSuccessException
from imagekitio.exceptions.NotFoundException import NotFoundException
from imagekitio.exceptions.UnknownException import UnknownException
try:
# Use ImageKit's SDK to make requests...
print('Run image kit api')
except BadRequestException, e:
# Missing or Invalid parameters were supplied to Imagekit.io's API
print('Status is: ' + e.response_metadata.http_status_code)
print('Message is: ' + e.message)
print('Headers are: ' + e.response_metadata.headers)
print('Raw body is: ' + e.response_metadata.raw)
except UnauthorizedException, e:
print(e)
except ForbiddenException, e:
# No valid API key was provided.
print(e)
except TooManyRequestsException, e:
# Can be for the following reasons:
# ImageKit could not authenticate your account with the keys provided.
# An expired key (public or private) was used with the request.
# The account is disabled.
# If you use the upload API, the total storage limit (or upload limit) is exceeded.
print(e)
except InternalServerException, e:
# Too many requests made to the API too quickly
print(e)
except PartialSuccessException, e:
# Something went wrong with ImageKit.io API.
print(e)
except NotFoundException, e:
# Error cases on partial success.
print(e)
except UnknownException, e:
# If any of the field or parameter is not found in the data
print(e)
# Something else happened, which can be unrelated to ImageKit; the reason will be indicated in the message field
Tests are powered by Tox.
$ git clone https://github.com/imagekit-developer/imagekit-python && cd imagekit-python
$ pip install tox
$ tox
$ git clone https://github.com/imagekit-developer/imagekit-python && cd imagekit-python
$ pip install -e .
To integrate ImageKit Samples in the Python, the code samples covered here are hosted on GitHub - https://github.com/imagekit-samples/quickstart/tree/master/python.
Open the python/sample.py
file and replace placeholder credentials with actual values. You can get the value of URL-endpoint from your ImageKit dashboard. API keys can be obtained from the developer section in your ImageKit dashboard.
In the python/sample.py
file, set the following parameters for authentication:
from imagekitio import ImageKit
imagekit = ImageKit(
private_key='your private_key',
public_key='your public_key',
url_endpoint = 'your url_endpoint'
)
To install dependencies that are in the python/requirements.txt
file, can fire this command to install them:
pip install -r python/requirements.txt
Now run python/sample.py
. If you are using CLI Tool (Terminal/Command prompt), open the project in CLI and execute it.
# if not installed already
pip install imagekitio
# if installing local sdk
pip install -e <path_to_local_sdk>
# to run sample.py file
python3 python/sample.py
For any feedback or to report any issues or general implementation support, please reach out to [email protected]
Released under the MIT license.