You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
It is mentioned in the paper - "A second branch embeds fj via depth-wise convolution and passes it through an SSM layer". I failed to understand the DWConv layer after I printed the model summary.
For example, the below block is the summary of a cm-mamba bottleneck layer.
Dear Authors,
It is mentioned in the paper - "A second branch embeds fj via depth-wise convolution and passes it through an SSM layer". I failed to understand the DWConv layer after I printed the model summary.
For example, the below block is the summary of a cm-mamba bottleneck layer.
(bottleneck_5): cmMambaWithCNN(
(mamba_layer): MambaLayerOnlyspiral(
(norm): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
(mamba1): Mamba(
(in_proj): Linear(in_features=256, out_features=1024, bias=False)
(conv1d): Conv1d(512, 512, kernel_size=(4,), stride=(1,), padding=(3,), groups=512)
(act): SiLU()
(x_proj): Linear(in_features=512, out_features=48, bias=False)
(dt_proj): Linear(in_features=16, out_features=512, bias=True)
(out_proj): Linear(in_features=512, out_features=256, bias=False)
)
(mamba2): Mamba(
(in_proj): Linear(in_features=256, out_features=1024, bias=False)
(conv1d): Conv1d(512, 512, kernel_size=(4,), stride=(1,), padding=(3,), groups=512)
(act): SiLU()
(x_proj): Linear(in_features=512, out_features=48, bias=False)
(dt_proj): Linear(in_features=16, out_features=512, bias=True)
(out_proj): Linear(in_features=512, out_features=256, bias=False)
)
(conv1d): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1))
)
(cc): ChannelCompression(
(skip): Sequential(
(0): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(block): Sequential(
(0): Conv2d(512, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(4): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(residual_cnn): Sequential(
(0): ResnetBlock(
(conv_block): Sequential(
(0): ReflectionPad2d((1, 1, 1, 1))
(1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), bias=False)
(2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(3): ReLU(inplace=True)
(4): ReflectionPad2d((1, 1, 1, 1))
(5): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), bias=False)
(6): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
)
)
Kindly share more information on my query.
Thanks
The text was updated successfully, but these errors were encountered: