-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathprojector_multicoil.py
311 lines (271 loc) · 15.4 KB
/
projector_multicoil.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
import numpy as np
import tensorflow as tf
tf.compat.v1.disable_v2_behavior()
import dnnlib
import dnnlib.tflib as tflib
from skimage.metrics import peak_signal_noise_ratio as compute_psnr
from skimage.metrics import structural_similarity as compute_ssim
######################################################################################################################################################################
#PROJECTOR CLASS FOR MULTICOIL INFERENCE
class Projector:
def __init__(self):
self.num_steps = 1200
self.dlatent_avg_samples = 10000
self.initial_learning_rate = 0.01
self.initial_noise_factor = 0.05
self.noise_ramp_length = 0.75
self.verbose = False
self.clone_net = True
self._D = None
self._G = None
self._minibatch_size = None
self._dlatent_avg = None
self._noise_vars = None
self._noise_init_op = None
self._noise_normalize_op = None
self._dlatents_var = None
self._noise_in = None
self._images_expr = None
self._target_images_var = None
self._loss = None
self._lrate_in = None
self._opt = None
self._opt_step = None
self._cur_step = None
self.contrast = None
self.pad_x = None
self.pad_y = None
self.initial_weights = None
self.us_image = None
self.Kloss = None
self.TVloss = None
def _info(self, *args):
if self.verbose:
print('Projector:', *args)
######################################################################################################################################################################
#FOURIER TRANSFORMATION FUNCTIONS FOR NUMPY ARRAYS AND TENSORS
def fft2c_multi_np(self,im):
array = []
for i in range(im.shape[2]):
image = im[:,:,i]
array.append(np.fft.fftshift(np.fft.fft2(np.fft.ifftshift(image))))
return np.stack(array[:],axis=2)
def ifft2c_multi_np(self,d):
array = []
for i in range(d.shape[2]):
data = d[:,:,i]
array.append(np.fft.fftshift(np.fft.ifft2(np.fft.ifftshift(data))))
return np.stack(array[:],axis=2)
def fft2c_multi(self,im):
array = []
for i in range(im.shape[2]):
image = im[:,:,i]
array.append(tf.compat.v1.signal.fftshift(tf.compat.v1.signal.fft2d(tf.compat.v1.signal.ifftshift(image))))
return tf.stack(array[:],axis=2)
def ifft2c_multi(self,d):
array = []
for i in range(d.shape[2]):
data = d[:,:,i]
array.append(tf.compat.v1.signal.fftshift(tf.compat.v1.signal.ifft2d(tf.compat.v1.signal.ifftshift(data))))
return tf.stack(array[:],axis=2)
def fft2c(self, im):
return tf.compat.v1.signal.fftshift(tf.compat.v1.signal.fft2d(tf.compat.v1.signal.ifftshift(im)))
def ifft2c(self, d):
return tf.compat.v1.signal.fftshift(tf.compat.v1.signal.ifft2d(tf.compat.v1.signal.ifftshift(d)))
def fft2c_np(self,im):
return np.fft.fftshift(np.fft.fft2(np.fft.ifftshift(im)))
def ifft2c_np(self,d):
return np.fft.fftshift(np.fft.ifft2(np.fft.ifftshift(d)))
######################################################################################################################################################################
#DEFINITION FOR LATENT VECTORS, NOISE PARAMETERS, AND TRAINED GENERATOR WEIGHTS
def set_network(self, G, dataset_name, minibatch_size=1):
assert minibatch_size == 1
self._G = G
self.initial_G = G.clone()
self._minibatch_size = minibatch_size
if self._G is None:
return
if self.clone_net:
self._G = self._G.clone()
# Find dlatent stats.
if dataset_name == "fastMRI_brain":
self._dlatent_avg = np.load('datasets/latents/fastMRI_latent.npy')
elif dataset_name == "umram_brain":
self._dlatent_avg = np.load('datasets/latents/umram_latent.npy')
elif dataset_name == "fastMRI_knee":
self._dlatent_avg = np.load('datasets/latents/fastMRI_knee_latent.npy')
else:
print("Unknown Client Detected")
dlatent_avg0 = np.load('datasets/latents/fastMRI_latent.npy')
dlatent_avg1 = np.load('datasets/latents/umram_latent.npy')
dlatent_avg2 = np.load('datasets/latents/fastMRI_knee_latent.npy')
self._dlatent_avg = (dlatent_avg0 + dlatent_avg1 + dlatent_avg2)/3
# Noise and weight optimization declarations
self._info('Setting up noise inputs...')
self._noise_vars = []
noise_init_ops = []
noise_normalize_ops = []
self.weights_ops = []
self.initial_weights = []
weight_init_ops = []
for w in self._G.vars:
m = self._G.vars[w]
m_copy = self.initial_G.vars[w]
self.initial_weights.append(m_copy)
self.weights_ops.append(m)
weight_init_ops.append(tf.compat.v1.assign(m, m_copy))
self._weight_init_op = tf.group(*weight_init_ops)
while True:
n = 'G_synthesis/noise%d' % len(self._noise_vars)
if not n in self._G.vars:
break
v = self._G.vars[n]
self._noise_vars.append(v)
noise_init_ops.append(tf.compat.v1.assign(v, tf.random.normal(tf.shape(v), dtype=tf.float32)))
noise_mean = tf.compat.v1.reduce_mean(v)
noise_std = tf.compat.v1.reduce_mean((v - noise_mean)**2)**0.5
noise_normalize_ops.append(tf.compat.v1.assign(v, (v - noise_mean) / noise_std))
self._info(n, v)
self._noise_init_op = tf.group(*noise_init_ops)
self._noise_normalize_op = tf.group(*noise_normalize_ops)
# Network output expressions
self._info('Building image output graph...')
# Input latent placeholder
self._dlatents_var = tf.compat.v1.Variable(tf.ones([1,512]),name = 'dlatents_var')
# Undersampling mask placeholder wrt contrast - represents site specific imaging operator dependent on acc rate and undersampling pattern
if self.contrast == 'T1f' or self.contrast=='FLAIRf':
self.mask = tf.compat.v1.Variable(tf.zeros([320,256], dtype=tf.complex64), trainable=False, dtype=tf.complex64)
elif self.contrast == 'T2f':
self.mask = tf.compat.v1.Variable(tf.zeros([384,288], dtype=tf.complex64), trainable=False, dtype=tf.complex64)
elif self.contrast == 'T1u' or self.contrast == 'T2u' or self.contrast == 'PDu' :
self.mask = tf.compat.v1.Variable(tf.zeros([248,192], dtype=tf.complex64), trainable=False, dtype=tf.complex64)
else:
self.mask = tf.compat.v1.Variable(tf.zeros([320,320], dtype=tf.complex64), trainable=False, dtype=tf.complex64)
self.pad_x = int((512 - self.mask.shape[0]) // 2)
self.pad_y = int((512 - self.mask.shape[1]) // 2)
self.coil_map = tf.compat.v1.Variable(tf.zeros([(512- 2 * self.pad_x) ,(512- 2 * self.pad_y) ,5], dtype=tf.complex64), trainable=False, dtype=tf.complex64)
# Input noise placeholder
self._noise_in = tf.compat.v1.placeholder(tf.float32, [], name='noise_in')
# One-hot coded vector placeholder to carry out site information
self.labels = tf.compat.v1.Variable(tf.zeros([1,3]),name = 'labels', trainable=False)
# Generate fake images from Generator network based on input latent and label
self._images_expr = self._G.get_output_for(self._dlatents_var, self.labels, randomize_noise=False)
# K-space loss and gradient loss definitions
self._info('Building loss graph...')
# Generate real&imag channel concatenated fully sampled(target) image
self._target_images_var = tf.compat.v1.Variable(tf.zeros(self._images_expr.shape), name='target_images_var')
self.us_image = tf.compat.v1.Variable(tf.zeros(self.coil_map.shape, dtype=tf.complex64),name='us_image_var', dtype=tf.complex64)
# Convert target image to complex variable
self.target_images_var_complex = tf.squeeze(tf.complex(self._target_images_var[:,0,:,:], self._target_images_var[:,1,:,:]))
self.target_images_var_complex = tf.stack([self.target_images_var_complex,self.target_images_var_complex,self.target_images_var_complex,self.target_images_var_complex,self.target_images_var_complex],axis=2)
self.target_images_var_complex = self.target_images_var_complex[self.pad_x:(512-self.pad_x), self.pad_y:(512-self.pad_y), :]
self.full_org_image_coil_separate = tf.compat.v1.math.multiply(self.target_images_var_complex, self.coil_map)
self.coil_seperate_mask = tf.stack([self.mask, self.mask, self.mask, self.mask, self.mask], axis=2)
# Target fully sampled-coil seperate k-space
self.full_kspace_org_image_coil_separate = self.fft2c_multi(self.full_org_image_coil_separate)
self.undersampled_kspace_org_image_coil_separate = tf.compat.v1.math.multiply(self.full_kspace_org_image_coil_separate ,self.coil_seperate_mask)
# Generate network output fake image in desired data range
self.proc_images_expr_complex = tf.squeeze(tf.complex(self._images_expr[:,0,:,:],self._images_expr[:,1,:,:]))
self.proc_images_expr_complex = self.proc_images_expr_complex[self.pad_x:(512-self.pad_x), self.pad_y:(512-self.pad_y)]
self.proc_images_expr_complex = tf.stack([self.proc_images_expr_complex,self.proc_images_expr_complex,self.proc_images_expr_complex,self.proc_images_expr_complex,self.proc_images_expr_complex],axis=2)
self.proc_images_expr_complex_coil_separate = tf.compat.v1.math.multiply(self.proc_images_expr_complex, self.coil_map)
# Generate fully sampled k-space
self.full_kspace_gen_image = self.fft2c_multi(self.proc_images_expr_complex_coil_separate)
# Generate network output fake image's k-space
self.undersampled_kspace_gen_image_coil_separate = tf.math.multiply(self.full_kspace_gen_image,self.coil_seperate_mask)
diff = self.undersampled_kspace_org_image_coil_separate - self.undersampled_kspace_gen_image_coil_separate
self.Kloss = tf.math.sqrt(tf.compat.v1.reduce_mean( tf.math.square(tf.math.real(diff)) + tf.math.square(tf.math.imag(diff)) ))
# Define gradient loss to prevent noise amplification
self.TVloss = tf.compat.v1.reduce_sum(tf.compat.v1.image.total_variation(self.proc_images_expr_complex_coil_separate))
# Combine both losses
self._loss = self.Kloss + 0.0001*self.TVloss
# Optimizer.
self._info('Setting up optimizer...')
self._lrate_in = tf.compat.v1.placeholder(tf.float32, [], name='lrate_in')
self._opt = dnnlib.tflib.Optimizer(learning_rate=self._lrate_in)
self._opt.register_gradients(self._loss, [self._dlatents_var] + self.weights_ops)
self._opt_step = self._opt.apply_updates()
def run(self, target_images):
# Run to completion.
self.start(target_images, self.mask, self.coil_map)
while self._cur_step < self.num_steps:
self.step()
# Collect results.
pres = dnnlib.EasyDict()
pres.dlatents = self.get_dlatents()
pres.noises = self.get_noises()
return pres
def start(self, target_images, mask, coil_map, labels):
assert self._G is not None
# self._G.reset_vars()
self.target_images_initial = target_images
# Prepare target images.
self._info('Preparing target images...')
target_images = np.asarray(target_images.copy(), dtype='float32')
target_images = (target_images)
target_images = np.tile(target_images, [1,1,1,1])
sh = target_images.shape
assert sh[0] == self._minibatch_size
if sh[2] > self._target_images_var.shape[2]:
factor = sh[2] // self._target_images_var.shape[2]
target_images = np.reshape(target_images, [-1, sh[1], sh[2] // factor, factor, sh[3] // factor, factor]).mean((3, 5))
self.target_images = target_images
# Initialize optimization state.
self._info('Initializing optimization state...')
print("Labels:", labels,labels.shape, labels.dtype)
tflib.set_vars({self._target_images_var: target_images,self._dlatents_var: self._dlatent_avg, self.mask:mask, self.coil_map :coil_map, self.labels:labels})
tflib.run(self._noise_init_op)
tflib.run(self._weight_init_op)
self._opt.reset_optimizer_state()
self._cur_step = 0
def step(self):
assert self._cur_step is not None
if self._cur_step >= self.num_steps:
return
if self._cur_step == 0:
self._info('Running...')
# Hyperparameters.
t = self._cur_step / 1500
noise_strength = self.initial_noise_factor * max(0.0, 1.0 - t / self.noise_ramp_length) ** 2
learning_rate = self.initial_learning_rate
# Train.
feed_dict = {self._noise_in: noise_strength, self._lrate_in: learning_rate}
_, loss = tflib.run([self._opt_step, self._loss], feed_dict)
tflib.run(self._noise_normalize_op)
self._cur_step += 1
def get_cur_step(self):
return self._cur_step
def get_dlatents(self):
return tflib.run(self._dlatents_var)
def get_noises(self):
return tflib.run(self._noise_vars)
def untouched_images(self):
a = tflib.run(self._images_expr, {self._noise_in: 0})
my_images = np.zeros([512,512,2])
my_images[:,:,0] = a[0,0,:,:]
my_images[:,:,1] = a[0,1,:,:]
return my_images
def get_mask(self):
return tflib.run(self.mask)
def get_coil_maps(self):
return tflib.run(self.coil_map)
def apply_dc(self, output, reference, us_mask, coil_map, pad_x, pad_y):
output_complex = output[pad_x:512-pad_x,pad_y:512-pad_y,0] + 1j*output[pad_x:512-pad_x,pad_y:512-pad_y,1]
output_complex = output_complex/np.max(np.abs(output_complex))
reference_complex = reference[0,0,pad_x:512-pad_x,pad_y:512-pad_y] + 1j*reference[0,1,pad_x:512-pad_x,pad_y:512-pad_y]
reference_complex = reference_complex/np.max(np.abs(reference_complex))
output_dc = np.zeros(output_complex.shape,dtype='complex64')
for coil_ind in range(coil_map.shape[2]):
out_mapped = output_complex*coil_map[:,:,coil_ind]
ref_mapped = reference_complex*coil_map[:,:,coil_ind]
out_fft = self.fft2c_np(out_mapped)
ref_fft = self.fft2c_np(ref_mapped)
out_fft[us_mask>0] = ref_fft[us_mask>0]
output_dc += self.ifft2c_np(out_fft)*np.conjugate(coil_map[:,:,coil_ind])
output_dc = np.abs(output_dc)
reference_abs = np.abs(reference_complex)
reference_abs[reference_abs>1] = 1
psnr = compute_psnr(reference_abs,output_dc)
ssim = compute_ssim(reference_abs,output_dc)
return output_dc, reference, psnr, ssim
#----------------------------------------------------------------------------